EBICS specification
EBICS detailed concept, Version 3.0.2

Specification
EBICS

(Electronic Banking Internet
Communication Standard)

Version 3.0.2

Final Version, June 27th 2022
This specification is valid from December 30", 2022.

© EBICS SC
Page:1
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Amendment history
The following table provides an overview of the essential changes from revision version 3.0.1
to the revision version 3.0.2.

1.1 A Update of the introductory chapter

4413 C Clarification that a bank can act as a "private CA" exclusively for its
customers.

10.2.3.1 Ext Reintroduction of positive and negative end label instead of "neutral”
end label.

On top of that, various minor changes (i.e. editorial adjustments, update of references and
corrections of obvious errors) were made throughout the document.

In particular, final references to PTK, which is no longer included in the EBICS standard, have been
removed.

* E = Error; A = Amendment; C = Clarification; Ext = Extension; D = Deletion

© EBICS SC Page: 2
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Contents
1 Overview and objectives Of EBICS ..o 8
1.1 Objective of the COOPEIAtION...........uuuiiiii e e e e e eeaaenes 8
1.2 General objectives Of EBICS ... 8
2 1= o 1 0] B 10
2.1 B =] 1.0 TP 10
2.2 1N 7= 1o o 10
2.2.1 XV 10
2.2.2 FlOW QIaQramScoeiiiiiiiiiiiiiiiieieee ettt eeeeees 12
A2 T © 11 0 T=T gl o) = 4o] o 1SRRI 13
2.3 DALA TY IS .. ettt e r e 13
3 DESIGN AECISIONS ..ttt 15
3.1 OSI model from EBICS PErSPECLIVEccoooiiiiiiieiiiieeeeee 15
3.1.1 TCPI/IP as package-orientated transmission layercccceeeeeeevvveninnnnn. 15
3.1.2 TLS as transport €NCryptioN...........ouuviiiiiiieeiiiiie e 16
3.1.3 HTTP(S) as a technical basic protocol.............ccccoeeiiieiiiiiiiiiiee e, 17
3.1.4 XML as an application protocol languagecccoeeevvviiiiiiiiiiieeeeeeeeiinns 17
3.2 Compression, encryption and coding of the orderdatacoovvvviiiinnnnen, 22
3.3 Segmentation of the order data...........ccooooeeiiiiiiiii 23
3.4 Recovering the transmission of order data (recovery) [optional]ccccvvennn... 23
3.5 Electronic signature (ES) of the order data..............cccooeeiiiiiiiiiiiiii e, 24
3.5.1 SUBSCHDEIS ES...cooiiiiiiiiiiiiiiiiieieeeeeeeeeeeee et 24
3.5.2 Financial institution’s ES [planned]ccccoriiiiie 25
3.5.3 Representation of the ES’s in EBICS messages..........cccccovvieiiiiiiiiininnnn, 26
3.6 Preliminary verification [optional].............oiiiiiiiiiiiii e 27
3.7 Technical SUDSCIDEISoovviiiiiiiiiii e 27
3.8 Identification and authentication SIgNAatureccccceeeeiie e e 28
3.9 XB0Q LA .o 30
3.10 Supported administrative Order tYPESocciiiviiiiieie e e 31
3.11 (O] (o [T oo T = 1 41=] (=] £ TSRS 31
3.12 Flow of the EBICS tranSacCtiONS...........uuuuuuuummiiiiiiiiiiiiiiiiiiiiieiinnnnnnnnnnnnnnnnnnnnnnnnnnnes 32
3.13 Interpretation of BTF element combinations by the bank server...........cccccccuun..... 35
3.14 Interpretation of ES /EDS flag combinations by the bank server..............c............ 36
©EBICS SC Page: 3

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4 QN A =TT T =T o 41T o S TP 37
4.1 Overview of the KEYS USEMoooiiiiiiiii 37
4.2 Representation of the public KEYSuuiiiiiiiiii 38
4.3 Actions within Key Management.............eeueiiiiiiiiiiiiiiiiiiiiiieieeeee e eeeeeeeeeees 40
4.4 1 L= 15T Lo o 40
4.4.1 Subscriber initialiSation..............uuiiiiiii 43
4.4.2 Download of the financial institution’s public Keys.................evvvviiiiiiinnnnns 61
4.5 Suspending @ SUDSCIIDET ..o 68
Y0 R N1 (= 1 0= L)Y/ T 68
4.5.2 Revoking a subscriber via SPR ... 69
4.6 KBY CNANGES ...t 69
4.6.1 Changing the subscCriber KeYsuuuuuiiiiiiiiiiiiiiiiis 70
4.6.2 Changing the DANK KEYSuuuuuiiiiiiiiiiiiiiiiiiiiies 76
4.7 Change-over to longer Key 1engths.........oooooiiiii 78
4.8 SUMIMABIY <.ttt e e e ettt b e e e e e e et e et bbb e e e e e e e eeesbbbaneeeeeeeees 79
5 oS @S A= U 7= Toa 1] 1= 80
51 GENETAI PrOVISIONS ... 80
5.1.1 EBICS tranSACHONSccvviiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeeeees 80
5.1.2 Transaction phases and transaction Steps..........cccooveeevvvvviiiiiiiieeeeeeennnnnns 80
5.1.3 Processing Of OFJerS.......uuuiiiii i e e 80
5.1.4 Transaction adminiStration...............eeuuiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeee 81
5.2 Assignment of EBICS request to EBICS transactionccccevvvviiiiiieeeeeeennnn, 82
5.3 Preliminary verification of orders [optional]...........coouiiiiiiiiiiiiiiic e, 83
54 Recovery of transactions [optional]ccooviieeiiiiiiiii e 85
55 (U]] (oF=To I U= T[T Tt 1 10] 1= 86
5.5.1 Sequence of upload transSactions..............coovvvvviiiiiiiie e e 86
5.5.2 Recovery of upload transactions..............ccoevvviiiiiii e 114
5.6 DOWNIOA trANSACHIONSuuutiiiiiiiiiiiiiiiiiiiiiiiiii e 118
5.6.1 Sequence of download transactions...........ccccccceeeiiie i 118
5.6.2 Recovery of download transactionsccccceeeeeiiie i 139
6 [Y] 77 0] 10 1 [PPSR 144
6.1 ENcryption at TLS IEVELo e 144
6.2 Encryption at application 18VEl...........oooviiiiii e 144
7 Segmentation of the order data ... 146
7.1 ProCess deSCHPLION......cceiii e 146
© EBICS SC Page: 4

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

7.2 Implementation in the EBICS MESSAJESuuuummiiiiiiiiiiiiii e 146
8 Electronic Distributed Signature (EDS) ... 148
8.1 PrOCESS HESCIIPLION ...ttt 148
8.2 Technical implementation of the EDS.............ooiiiiiiiiiiiiiiiiiieeieeeeeees 150
8.3 Detailed description of the administrative EDS order typesccccceeeennnnnnns 152
8.3.1 HVU (download EDS overview) and HVZ (Download EDS
overview with additional iNformation)cevevviiviiiiiiiiiiriiiiiiieeeeeeeee 152
8.3.2 HVD (retrievVe EDS State).........cuuvviiiiiiiiiiiiiiiiiiiiieieieeeieeeeeeeeeeeeeeeeeeeeeeeees 166
8.3.3 HVT (retrieve EDS transaction detailS)cevvviiiiiiiiiiiiiiiiiiiiiiieenene 172
8.3.4 HVE (add electronic SigNature)eeuveereriiieeiieiiiiieeieeeeeeeeeeeeeeeeeeeeens 184
8.3.5 HVS (Cancellation of orders in the EDS)ccovvviiiiiiiiiiiiiiiiiiiiiiieenee, 186
8.3.6 Used Service Structures (restricted and not restricted)...............ceeveeee.. 189
9 “Other” administrative EBICS order types ... 192
9.1 HAA (download retrievable business transaction formats BTF)cccccccunne. 192
0.1.1 HAA FEBOUEST ...ttt e et e 192
0.1.2 HAA IESPONSE ..ottt e et 192
9.2 HPD (download bank parameters)eeiiiieeeiiieiiiiie e 193
Lo B A o | o 0 =T o U= 194
0.2.2 HPD IS PONSE .. it eieeiiie ettt e e e e e 194
9.3 HKD (retrieve customer’s customer and subscriber information)........................ 199
Lo TG 20 A o | N = o U= 199
0.3.2 HKD I8SPONSE .. .cviiieieeiiii ettt et e e e e e e et e e e 199
9.4 HTD (retrieve subscriber’s customer and subscriber information) 210
Lo IR o D I (=0 [1] 210
9.4.2 HTD IrESPONSE . .cevtii ittt e ettt e et e e e e e e e e e e et e eeearaaas 210
9.5 HEV (Download of supported EBICS VEISIONS)ceeviiieiiiiiiiiiiie e 212
O0.5.1 HEV TQUEST ...t 212
O0.5.2 HEV TS P0NSE ettt ittt ettt e e e e 212
9.5.3 Schema for HEV request / HEV reSPONSEecccceeeveeeiiiiiiiiiiiiie e, 213
10 EBICS Customer acknowledgement (HAC)..........iiiiiii i 215
10.1 Preliminary NOTES. e e e e e s 215
10.2 Allocation of pain.002 for HACcoi i 215
10.2.1 Allocation of the element group Group Header............cc.oooeeevevvvvinnnnnnnn. 215
10.2.2 Allocation of the element group Original Group Information and
SHBIUS ..ttt 217
© EBICS SC Page: 5

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10.2.3 Allocation of the element group Original Payment Information and

SIS et
10.3 Annex for HAC: External reason codes (result of action)..............ccccceccciinnnnnns
10.4 Annex for HAC: Type/result of action (permitted Pairs)..........cceeeeeeeeeeeeeeeeeeeeeennne.
11 Appendix: CryptographiC PrOCESSES.uiiiiiiiiiiiiiiiiiie ittt ee e eeeeeeeeeeeeeees
111 Identification and authentication SIgNATUIEcccoiiimmiiiiiiiiaas
0 It R o o Tl ST PP PRSPPI
0 I I o 0 1 - ST PPPRPTIN
11.2 El@CTrONIC SIGNATUIESuuiiiiiiiiiiiiiiiii e
Ot R o 0 Tol =PSRRI
I o 1 1 - | SRR
11.2.3 EBICS authorisation schemata for signature classes............................
11.3 ENCIYPEION ...
11.3.1 Encryption at TLS IeVel.....ccooi i,
11.3.2 Encryption at application [evel ...
114 Replay avoidance via Nonce and TimeStamp............uuuuuuimimimmiimmmiiiiiinnns
11.4.1 ProcCess desCriptionccceeeiiieeeeeeeeee e
11.4.2 Actions of the customer SyStem...........ccouviiiiiiiieiiiiie e
11.4.3 Actions of the bank system...........ccoooiiiiiiii
115 INILANSALION TETEIS.ttt
11.5.1 Initialisation letter for INI (example with version A006 of the ES)
11.5.2 Initialisation letter for HIA (eXample)cccoeeviiieiiiiiiiicee e
11.6 Generation of the transaction IDS............oooooiiii
12 Appendix: Overview of selected EBICS detailsccccooeviiiiiiiiiiiiii e,
12.1 OptioNal EBICS fEAIUIESci i
12.1.1 Optional administrative order typesccceeeviieeeeiiiiiiiiii e
12.1.2 Optional functionalities in the course of the transaction
12.2 EBICS bank Parameters.........uuuuiiiiieieeieeiiiie e e et e e e et e e e e e e e arnaa s
12.3 Security media of bank-technical KEYSoiiiiiiiiiiiiiii e,
12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDS.......c..ccovvvvvvvvneenn..
13 Appendix: Complete List of Administrative Order Type Identifierscccceeeeeeee.
14 Appendix: Signature process for the electronic signature........cccceeeveeiiiiiiiiiiinieeeeee,
14.1 Version A0O05/A006 of the electronic Signature............cccceeeeeeeeeiieeeiiiee e
14.1.1 Preliminary remarks and introduction.................cccoevvviiiiiiee e e,
L. 2 RS A s
©EBICS SC Page: 6

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.3 Standard digital signature algorithmcccoooii 248
14.1.4 Signature Mechanisms AO05 and AOOB............ccooeveeiiiiiiiiiiieeeeeeeeeeeee, 250
1415 REIEIENCES ... 257
14.1.6 XML structure of signature versions AOO5/A006cccceeeeeeeeeeeenenn. 258
15 Appendix: Standards and refErEeNCES.........ovuiiiiiiiiiiiiiiiiiiiiee ettt 259
16 APPENTIX: GIOSSAIY .eeeiiiiiiiiiiiiiiiiiie ittt ettt et e e e e e e e et e e e e e e e e e e e e e e eeeeeeeeeneeeees 261
17 Table Of AIAGIAMS ..eeiiiiiiiiiiiiie ettt ettt e et e e e e e e e e eeeeeeeeeeees 265

The XML schema (H0O05, HO00 and S002) can be found on
https://www.ebics.org/en/technical-information/ebics-schema

© EBICS SC Page: 7
Status: Final V 3.0.2

https://www.ebics.org/en/technical-information/ebics-schema

EBICS specification
EBICS detailed concept, Version 3.0.2

1 Overview and objectives of EBICS

1.1 Objective of the cooperation

The German banking sector represented by Die Deutsche Kreditwirtschaft (DK) and
the French banking sector represented by Comité Francais d'Organisation et de
Normalisation Bancaires (CFONB) founded a company (EBICS SC) on the joint use
of EBICS in 2010. Meanwhile, the EBICS community consists of four countries as
the Swiss banking industry, represented by SIX Interbank Clearing and the Austrian
banking sector, represented by Payments Services Austria (PSA) also joined the
EBICS SC

EBICS was originally developed by the German banking industry and enables
corporate clients to conduct their banking business flexibly, securely and efficiently
and to select the most suitable services provider for their individual needs. EBICS
also has “multi-bank capability”, meaning that in general corporate clients can reach
any bank supporting the standard using the same software.

Principally, this specification is valid in general unless an instruction is specified for
a particular country relating to a special application of the specification.

Any optional functionality can be supported in one country (and rendered
mandatory) and, at the same time, not supported in another country.

The specific use of optional functionalities is described in detail in a common
Implementation Guide (chapter 3 of this guide).

By now EBICS is not only used for communication between (corporate) customers
and banks. It is also used for the exchange of information between financial market
infrastructures.

1.2 General objectives of EBICS

This EBICS (“Electronic Banking Internet Communication Standard”) detailed
specification describes the functionality of multi-bank capable, secure
communication via the Internet.

EBICS does not present any special requirements of the concrete architecture of the
customer’s systems; stand-alone desktop applications can be connected just as
easily as e.qg. client/server applications or applet solutions.

At the application level, the process “Remote data transmission with customer” is
augmented by the concept of Electronic Distributed Signature (EDS), which allows
chronologically and spatially-independent authorisation of orders from all customers.

The fundamental features of the EBICS standard are:

= Transmission of professional data (commercial transactions) using established bank-
specific formats

© EBICS SC Page: 8
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Possibility of the “Electronic Distributed Signature (EDS)”

Specification of the EBICS-specific protocol elements in XML

= Transmission of messages via http (“Internet-based”); utilisation of TLS for basic
transportation security between the customer’s and the bank’s systems as well as
between financial market infrastructures, using TLS server authentication

= Cryptographic safeguarding of each individual step of a transaction via encryption and
digital signatures at the application level.

The EBICS detailed specification is the basis for the development of customer and
bank systems that communicate using the EBICS protocol. As such, it contains
manufacturer-independent process descriptions and thereby guarantees interaction
between customer and bank systems from different manufacturers.

This detailed specification incorporates the EBICS protocol description and all
details relating to code management, EDS and the XML schemas for the order data
of the administrative (technical) EBICS order types. The complete XML schemas are
stored as separate HTML documents.

The detailed specification only limits the processing freedom of the customer and
bank systems with specifications and provisions where this is necessitated by
security considerations or processes beyond the scope of the EBICS
communication. In contrast to the EBICS Implementation Guide, implementation
alternatives will not be indicated in the detailed specification.

© EBICS SC Page: 9
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

2 Definitions

2.1 Terms

The following terms in small capitals have a special meaning in the protocol
definition:

= MUST: denotes a compelling requirement; only those implementations that fulfil this
requirement are deemed to be EBICS-conformant.

= SHALL/SHOULD: denotes requirements that are to be followed under normal
circumstances; however, individual exceptions are possible for technical or
professional reasons.

= CAN/MAY: denotes unbinding recommendations or optional features.

Functionalities or features of the EBICS protocol are designated as optional if they
do not have to be supported by the financial institution. Customers do not have a
legal claim to the corresponding functionality from the financial institutions.

Functionality or features of the EBICS protocol in a particular version are designated
as planned if they are being prepared for subsequent versions but may not yet be
used in the present version.

This specification is addressed to software vendors. The terms mentioned obove

refer to the requirements for implementions supporting EBICS functionality. It's no
requirement for the formulation of contracts between customer and bank.

2.2 Notation
2.2.1 XML

2.2.1.1 XML schema
The following symbology is used for graphical representation of XML schemas:

Elements are placed in rectangles.

Attributes are also placed in rectangles and are surrounded by an “attributes” box.

Elements, attributes and other declarations that belong to a complex type are
surrounded by a dashed box that is highlighted in yellow.

A “branch” (corresponds to choice in XML schema) is shown as an octagon
containing a switch symbol for three possible switch positions. The connecting lines
to the possible alternatives branch out on the right of the symbol.

A “sequence” (corresponds to sequence in XML schema) is shown as an octagon
containing a line symbol with three points on it. The connecting lines to the individual
sequence elements branch out on the right of the symbol.

© EBICS SC Page: 10
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Symbols with solid edges denote mandatory use, and in the XML schema correspond
to the attribute minOccurs="1" for elements or use="required" for attributes.

= Dashed symbols denote optional use, and in the XML schema correspond to the
attribute minOccurs="0" for elements or use="optional" for attributes.

= Crossed-out symbols denote planned usage, and in the XML schema correspond to
the attribute combination minOccurs="0" maxOccurs = “0” for elements or
use="prohibited" for attributes

= “m..n" in the right lower corner of an element symbol restrict the use of the element to
m- to n-times occurrence, and in the XML schema correspond to minOccurs="m"
maxOccurs="n"; correspondingly, where “m..~” minOccurs="m"
maxOccurs="unbounded"

= Element groups are represented by octagons, and correspond to the group
declaration in the XML schema

= Attribute groups are surrounded by boxes with the respective group names and
correspond to the attributeGroup declaration in the XML schema.

© EBICS SC Page: 11
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

—{ one_to_two_sequence_elements ﬂ

1.2

—{ unlimited_number_of_elements ”

B attributes

B ore AttributeGroug

required_attribute

1=

ElementGroup [=] == 1

v
4

Alternative [

[attributes
Attribute

Diagram 1: XML schema symbols

2.2.1.2 XML documents

Individual code segments are shown in the Courier font.
If an element name or type does not fit completely onto a line, the symbol » is used

to direct the reader to the next line.

|Complete examples of code are shown in Courier 8pt and are surrounded by a frame.

2.2.2 Flow diagrams
Processes are represented with the help of UML 2.0 activities. In this document they
receive a start and an end node. A start node is the starting point of a process, the
end node marks the end of an entire process.

Page: 12

© EBICS SC
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

For the sake of simplicity, activities will be nested within one another. Actions that
contain an activity will be marked with a fork symbol. Activity A in Diagram 2
comprises three process steps (actions). Step_2 is itself an activity comprising 2
process steps. Hence the activity Step_2 is called up within activity A, i.e. run
through from the start node of Step_2 to the end node of Step_2.

Step_2 \

Step_21

v

Stept_22

Diagram 2 Nesting of activities

2.2.3 Other notation

In the naming of new administrative order types, the appended tag “[mandatory]”
denotes that the financial institution MUST support this administrative order type. On
the other hand, the appended tag “[optional]” means that the financial institution CAN
support this administrative order type.

Similarly, the tag “[planned]” is appended to planned features or functions.

2.3 Datatypes

The XML schema defines a set of primitive and derived data types that can be used
to form your own data types.

The following primitive data types are primarily used in conjunction with EBICS:

= string: string of characters with unrestricted length and structure

* boolean: boolean truth value with the characteristics “true” (=1) or “false” (=0)
= decimal: decimal numbers to any degree of accuracy

= dateTime: time stamp with date and time in accordance with ISO 8601
The structure is as follows: YYYY-MM-DDTHH:MM:SS.sssZ. The character Z

© EBICS SC Page: 13
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

indicates that date and time have been converted to UTC. If the date string does
not correspond to this structure, the EBICS message has to be declined or the
ES verification has to be rated as negative, respectively.

= date: date in accordance with ISO 8601
= hexBinary: hexadecimal value with unrestricted length
= base64Binary: data type to record base64-coded binary data

= anyURI: uniform resource locator (e.g. URL, IP address).

The following pre-defined data types are derived from primitive data types and are
used in the EBICS standard:

= normalizedString: string of characters that has spaces (blanks) removed at the start
and end

= token: a normalizedString that contains no line feeds and no multiple spaces in
succession

= language: nationality label in accordance with RFC 1766
= nonNegativelnteger: non-negative integer values

= positivelnteger: positive integer values.

With the help of the aforementioned data types, new data types are defined in the
EBICS schema:

= simple data types merely define restrictive or expanding characteristics with regard
to the value range of an existing primitive or derived data type, i.e. they derive from
an existing data type

= complex data types define new structures composed of fields and attributes of
different (simple or complex) data types.

© EBICS SC Page: 14
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3 Design decisions

This chapter will point out decisions that had a decisive influence on the design of
the EBICS protocaol. It includes network-specific details as well as specifications of a
professional and technical nature.

3.1 OSImodel from EBICS perspective

L N \
application
protocol:
EBICS (XML) o
\ application-
(L) based
application layer
HTTP(S)
P J
4 A
simplified OSI tran-s;port
model including encryption: TLS
specialisations for > <
the EBICS protocol transport layer:
TCP
> y,
(p
network layer:
IP)
L) > transport
4 N based
physical layer
(e.g. ethernet)
- J

3.1.1 TCP/IP as package-orientated transmission layer

TCP/IP is used as a transport protocol. The data that is to be exchanged is
transmitted as packages via IP (Internet Protocol). This package transfer is
monitored by TCP (Transmission Control Protocol) as a transmission monitoring
protocol.

Communication is established using a URL (Uniform Resource Locator).
Alternatively, an IP address belonging to the respective financial institution can also
be used. The URL or IP address together with the EBICS host ID is required for
establishing a connection to the bank computer and is given to the customer upon
conclusion of the contract with the financial institution.

© EBICS SC Page: 15
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3.1.2 TLS as transport encryption

TLS was developed by the Transport Layer Security work group in IETF’s Security
Area. It is an open standard for secure transmission of package-orientated data,
originally developed by Netscape (initially under the name SSL). TLS aims to
guarantee data security on levels above TCP/IP. The protocol allows data
encryption, authentication of servers and message integrity for TCP/IP
communication.

It combines the following basic characteristics:

1. The TLS connection is confidential: With the TLS handshake, a common,
secret key is agreed using asymmetric encryption (RSA, in the case of
EBICS) that serves as a symmetric key (AES in the case of EBICS) in the
rest of the TLS session.

2. The integrity of the TLS connection is assured: The message transport
contains a message integrity verification via so-called Message
Authentication Codes (MACSs). Secure hash functions (SHA 256 in the case
of EBICS) are used for the MAC evaluations.

3. The identity of the financial institution is attested by the use of server
certificates and electronic signatures; the messages from the financial
institution are authenticated by means of this TLS server authentication.

4, TLS contains mechanisms to protect against man-in-the-middle attacks on
the TLS connection between customer and bank systems. To this end, it
uses internal counters and “shared secrets”, and additionally secures the
handshake against such an attack with signed summaries of the data
exchanged thus far.

A TLS connection is established between the customer system and the bank system
for transmission of the EBICS messages between these two systems.

TLS (details see current EBICS Annex “Transport Layer Security”) with X.509v3
server certificates is used, i.e. the server MUST authenticate itself via certificate. The
type of certificate MUST be suitable for the key exchange algorithm of the selected
key.

EBICS dispenses with TLS client authentication in Version HO05 to promote better
market acceptance. Later expansion to include TLS client authentication capability
(and the associated issue of X.509v3 client certificates for TLS to customer
systems) is not excluded.

Details regarding pre-distribution and verification of the trust anchors see
EBICS Annex Transport Layer Security (Chapter 3, Validation of TLS server
certificates).

© EBICS SC Page: 16
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3.1.3 HTTP(S) as a technical basic protocol

The Hypertext Transfer Protocol (HTTP) is a stateless data exchange protocol for
the transmission of data. HTTP is predominantly used in the “World Wide Web”
(WWW) for the transmission of websites.

The combination of HTTP and TLS as transport encryption is also referred to as
‘HTTPS” (HTTP Secure). Port 443 (SSL) is reserved for this purpose and can be
used in an unrestricted manner by the majority of firewall configurations.

In the case of the EBICS protocol, the statelessness of HTTP forces the use of its
own session parameters that logically combine several communication steps into
one transaction.

Communication between the customer and the financial institution takes place in a
classical manner via client/server roles. As before, the financial institution also takes
on the (passive) server role and the customer takes on the (active) client role. With
this communications schema, the client sends a request to the server via HTTP
request; the server replies with an HTTP response. The request can generally be
made as a GET request (additional data coded in the URL) or a POST request
(additional data appended to the HTTP header); in the context of EBICS, POST is
used exclusively.

With EBICS, HTTP 1.1 MUST be used by both the client and the server.

3.1.4 XML as an application protocol language

The EBICS application protocol uses the HTTP(S) technical base protocol. XML
(Extensible Markup Language) has been selected as the protocol language on the
application level. The following reasons are given for this decision:

1. XML uses readable tags. Tag names/attributes can be selected in such a
way that their meaning is obvious even without documentation.

2. Freeware XML parsers are available for common operating systems and
programming languages.

3. XML messages can easily be expanded with additional elements and
attributes. It is not necessary to adapt the existing message sections to
maintain the syntactic correctness (“well-formedness”) of the message as a
whole.

4, XML schema is available as a standardised definition language for validation
of XML messages.

UTF-8 MUST be used for character encoding within the EBICS XML message. UTF-8
is supported by all XML parsers and codes backwards compatible to ASCII.

© EBICS SC Page: 17
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The syntax of the XML messages is set with the help of so-called XSD files (XML
Schema Definition). The following XSD files have been defined for EBICS and can
be downloaded from https://www.ebics.org/en/ebics-schema

= “ebics_request H005.xsd”
contains the XML schema for requests from the customer system

= “ebics_response_HO005.xsd”
defines the XML schema for responses from the bank system

= “ebics_orders_HO005.xsd” contains order-specific data structures
= “ebics_types HO005.xsd” lists simple EBICS type declarations.

In addition to these main schemas, the following specific variants for transactions
that relate particularly to key management can also be found at the same place:

= “ebics_keymgmt_request H005.xsd" defines the XML schema for requests from the
customer system within the framework of key management.

= “ebics_keymgmt_response_H005.xsd“ contains the XML schema for responses from
the bank system within the framework of key management.
The schema "ebics_signature_S002.xsd" has been defined for submitting the ES in
structured form. It can also be downloaded from
https://www.ebics.org/en/ebics-schema

= This schema has been defined as an independent one in order that it can be applied
outside the EBICS domain. The import of the aforementioned name space is
required for use of the ES in EBICS. It features the prefix "esig".

= The schema "ebics_signhature _S002" references to structures of the XML signature
standard of the W3C (see chapter 3.8). This schema is stored at the same place
under the name "xmldsig-core-schema.xsd".

Each of the four XSD files with the extension " _request_HO05" or "_response_H005"
defines one or more types of EBICS XML messages each of which possesses a
different XML root element with an unambiguous name.

For Standard EBICS messages "ebics_request_H005.xsd“ defines the root element
ebicsRequest for customer system requests whereas
"ebics_response_H005.xsd“ defines the root element ebicsResponse for
responses of the bank system. For transactions of the key management
"ebics_keymgmt_request _H005.xsd“ contains three additional XML messages for
customer requests with the root elements ebicsUnsecuredRequest,
ebicsUnsignedRequest, and ebicsNoPubKeyDigestsRequest. Forkey
management "ebics_keymgmt response_H005.xsd“ defines the root element
ebicsKeyManagementResponse for responses of the bank system.

© EBICS SC Page: 18
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

~ebics H005.xsd“ includes these four XML schema files and therefore contains the
whole range of definitions of the EBICS schema version “HO05”. It can also be
downloaded from https://www.ebics.org/en/ebics-schema. Its target namespace is
also “urn:org:ebics:H005”:

By means of this file can be verified that all global definitions in the EBICS
namespace (elements and types) have unambiguous names. This feature of the
EBICS XML protocol facilitates the processing of EBICS XML messages with the
help of standard XML tools because the declaration of the XML root element and the
EBICS namespace are already sufficient to determine the allowed format for the
complete XML message. A standard XML parser, for example, is able to recognize
by this XML fragment against which definition in the EBICS XSD files the whole
document has to be vaildated:

<ebicsRequest xmlns="urn:org:ebics:H005" Version="HO005">

The Schema Location consists of one pair of references, separated by a blank. The

first member of the pair is the namespace name, and the second member is a hint

describing where to find an appropriate schema document for that namespace, e.g.

local file name ebics_request_H005.xsd:

<ebicsRequest xmlns="urn:org:ebics:H005" Version="HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=

"urn:org:ebics:HO005 ebics request H005.xsd">

By means of the following example taken from the XML schema file
"ebics_request_H005.xsd" the referencing of EBICS XML elements and attributes
for the EBICS root structure regarding standard requests of the customer system
(root element ebicsRequestand its sub-elements) is illustrated:

© EBICS SC Page: 19
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

& sttribuites

H orp ebics:VersionAttrGroup

Version

“Yersion of the ERICS
protacal (HOOK),

Revision af the ERICS
protacol (2.9, 10,

Attibutes ragarding the protocal version
and revision of EBICS,

ebicsRequest Ej— (an':.f #.l‘.\targetﬂamespacej

Electronic Banking Intemet

Cornrmunication Standard of -

the ERICS SCRL: multi-bank
capable interface For :
internet-bazed contains the

COMMAUnication . transaction-driven data,

E)E'—L‘ ebics:AuthSignature

Authantication signature,

contains order data, order
signaturelz] and further data
referring to the current arder,

Diagram 3: Root structure of the EBICS protocol

The XML root element for standard EBICS messages containing requests of the
customer system is called ebicsRequest. It contains some attributes with
fundamental information that are required for parsing the message as a whole
(attribute group VersionAttrGroup):

= Version for the EBICS protocol version (e.g. “H005")

= Revision for the EBICS protocol revision: This attribute SHOULD also be sent to
allow technical differentiation between several (compatible) revisions of the same
protocol version.

The following elements form the direct sub-structure of ebicsRequest:

* header: The XML tag contains technical information (so-called “technical control
data”) in the subtags:

- static for the technical control data that remains constant throughout the entire
transaction.

- HostID for the EBICS host ID for the identification of the bank's EBICS computer
system. The element HostID is contained in all EBICS request messages of the
customer system (for standard transactions as well as system-related transactions).
The EBICS host ID is communicated to the customer by the financial institution.

- mutable for the mutable technical control data.

© EBICS SC Page: 20
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Both subtags of header MUST appear in the above sequence.

* AuthSignature: The identification and authentication signature according to the
“XML Signature” standard is disposed in this element. The XML tag MUST appear in
all messages with the exception of the administrative order types INI, HIA and HPB
(these administrative order types use their own XML schemas; see Chapter 4.4).

= body contains the actual order data, signatures (ES’s) and other data that is directly
related to the order or that is required for its evaluation.

The XML requests from the subscribers to the financial institutions are designated
as EBICS requests, the XML replies from the financial institutions are designated as
EBICS responses. The HTTP binding of an EBICS request and the associated
EBICS response is: the EBICS request is embedded in an HTTP POST request, the
EBICS response is embedded in the corresponding HTTP response.

A typical HTTP request appears as follows in EBICS (extract):

POST /ebics HTTP/1.1

Host: www.die-bank.de

Content-Type: text/xml; charset=UTF-8
Content-Length: 800

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest xmlns="http://urn:org:ebics:H005"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_request H005.xsd”
Version="H005" Revision="1">

<header authenticate="true">
<static>

<HostID>EBIXHOST</HostID>
</static>
<mutable>
</mutable>

</header>

<AuthSignature>

</AuthSignature>
<body>

</body>

</ebicsRequest>

A corresponding possible HTTP response is shown in the following extract:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=UTF-8

© EBICS SC Page: 21

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3.2

Content-Length: 1538

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse xmlns="urn:org:ebics:H005"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics response H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">

<static>

</static>

<mutable>

</mutable>
</header>

<AuthSignature>

</AuthSignature>
<body>

</body>

</ebicsResponse>

Further details on the structure of EBICS protocol messages and transaction details
can be found in Chapter 5. The formats of the XML messages for the standard
responses of the bank system and the system-related messages of the key
management use different root elements the structure of which is widely analogous
to the standard request. The complete XML schemas can be found in the separate
HTML schema documentation.

The schema "ebics_hev.xsd" (also not renamed/updated for EBICS 2.5) which is
used for requests of EBICS versions supported by the bank is provided at
https://www.ebics.org/en/ebics-schema (details see also chapter 9.5).

Compression, encryption and coding of the order data

EBICS handles bank-technical order data in a transparent manner. This means:
independent of the specific data structure of different administrative order types,
order data is handled as a binary block and is embedded in the XML structure. To
this end, this order data MUST initially always be ZIP-compressed before
transmission, then hybrid encrypted (in accordance with process E002) and the
result finally base64-coded. Exceptions: In the case of the administrative key
management order types INI, HIA and H3K transmission is unencrypted (see
Chapter 4.4.1.2.5.1 for INI, HIA and H3K). The standards that define the ZIP
algorithm and base64 format that are valid in EBICS are specified in the Appendix
(Chapter 15).

© EBICS SC Page: 22

Status: Final V 3.0.2

https://www.ebics.org/en/ebics-schema

EBICS specification
EBICS detailed concept, Version 3.0.2

The data representation generated in this way is then to be set, for example, in the
XML element ebicsRequest/body/DataTransfer/OrderData without any
further character conversion.

The ZIP compression serves to reduce the data volume that is to be transmitted.

The actual data is symmetrically encrypted in the case of hybrid encryption. The
transaction key that is used for this purpose is again asymmetrically encrypted and
is appended, for example, in the form of the XML element
ebicsRequest/body/DataTransfer/DataEncryptionInfo/»
TransactionKey (see Chapter 6.2).

Encryption of the order data takes place in addition to TLS transport encryption. This
ensures that the order data is protected from unauthorised read access both on its
way via public networks (in addition to TLS) as well as on the other side of the TLS-
protected connection path.

For coding the binary stream, base64 only uses printable ASCII characters and thus
ensures that the order data reaches its destination in an unadulterated manner and
can be evaluated there as authentic.

3.3 Segmentation of the order data

Segmentation means the separation of large data volumes into smaller, individual
transmission segments.

With EBICS, segmentation of the order data takes place at the application protocol
layer. Order data may only be transmitted in an individual EBICS message if it does
not exceed the specified fixed size of 1 MB in compressed, encoded and base64-
coded form. This applies equally to transmit and download orders. If the 1 MB limit is
exceeded, the compressed, encrypted and base64-coded order data MUST be
separated into segments, wherein the size of each of these does not exceed the
fixed segment size of 1 MB. The segments are then transmitted in consecutive order
in individual EBICS messages.

Further details on segmentation of order data can be found in Chapter 7.

3.4 Recovering the transmission of order data (recovery) [optional]

Recovery allows the transmission of an order to be continued after the occurrence of
a transport or processing error without necessitating the re-transmission of all order
data segments that have already successfully been transmitted.

EBICS defines a recovery process at the XML application protocol layer that is
based on the sequence of transmission of order data in several fixed, pre-

© EBICS SC Page: 23
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

determined steps. It is an optimistic recovery process that dispenses with a separate
synchronisation step since the customer’s system generally knows the step from
which transmission of the order in question is to be continued.

Details relating to recovery can be found in Chapter 5.4.

3.5 Electronic signature (ES) of the order data

The “Electronic Signature” (ES) of the order data ensures the authenticity of the
order data on the other side of the TLS transmission path, independent of the
compression, encryption, coding and segmentation of the order data.

In the case of upload orders this is the deliberate signature of a subscriber that
documents the content commitment of the subscriber, in the case of download
orders it is the signature of the financial institution.

ES’s are generated in accordance with the Appendix (see Chapter 14), in EBICS
Version “HO05” a minimum requirement is support of ES Version “A005” (see
Appendix (Chapter 14)).

3.5.1 Subscriber’s ES

The order data of upload orders MUST be signed before delivery, i.e. provided with at
least one ES. Exceptions are the administrative key management order types INI
and HIA, which are not signed in a bank-technical manner.

According to the signature process used and, regarding EBICS, supported by the
bank, the bank system can extract the hash value of the signed order data from a
subscriber’'s ES with the help of the signatory’s public signature key.

The following sighature classes are defined for the ES’s of subscribers, listed here
in order of reducing strength (“E” is the strongest and “T” is the weakest signature
class):

Single signature (type “E”)

First signature (type “A”)

Second signature (type “B”)

Transport signature (type “T”)

An authorisation model for ES’s is defined within the financial institution by the
assignment of signature classes to subscribers. For example, subscribers with
signature class A are entitled to provide first signatures for orders. Detailed
authorisation models CAN be defined individually for institutions, wherein the

© EBICS SC Page: 24
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3.5.2

signature authorisation of a subscriber can be parameterised with regard to the BTF
identifiers and/or the amount limit and/or the account used.

The signature class of a subscriber’s given ES is the strongest class that can be
assigned to this ES in the authorisation model of the corresponding financial
institution.

Signature authorisations of type “T” are assigned globally to subscribers or (in
detailed authorisation models) to subscribers in combination with certain BTF
identifiers. However, they are not dependent on accounts or amount limits.
Transport signatures are not used for bank-technical authorisation of orders, but
rather merely for their (authorised) submission to the bank system.

Bank-technical ES’s are deemed to be ES’s of type “E”, “A” or “B”. Bank-technical
ES’s are used for the authorisation of orders. Orders can require several bank-
technical ES’s, which MUST then be supplied by different subscribers. Subscribers of
different customers can also be the signatory of an order.

A minimum number of required bank-technical ES’s will be agreed between the
financial institution and the customer for each supported BTF identifiers.

Details on the format of the ES and its application for order authorisation are given
in the Appendix (Chapter 11.2).

Financial institution’s ES [planned]

The ES of the financial institution is a planned functionality of EBICS. The
prerequisite for the use of this function is a definitive legal view relating to it.

Preparations have been made both in this detailed concept and also in the EBICS
XML schema files that will facilitate the implementation of the following stipulations
in future versions of EBICS:

mandatory ES of the hash value and the display file of the order that is to be signed in
the case of administrative order type HVD (see Chapter 8.3.2.2).

Primed in the schema but not usable yet: ES of download data in the case of
download orders.

Download of the financial institution’s public bank-technical key via order type HPB
See Chapter 4.4.2.2

Verification of the hash value of the financial institution’s public bank-technical key
within the framework of transaction initialisation.
It is a component of each transaction initialisation to verify that the financial
institution’s public key that has been made available to the subscriber. Exceptions
are the administrative key management order types INI, HIA, HPB as well as the
administrative order type HEV for the request of EBICS versions supported by the

© EBICS SC Page: 25

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

bank.
See Chapter 4.6.2 and Chapter 11.1.2.

= Binary format for the financial institution’s ES is analogous to the subscriber’s ES
See Appendix (Chapter 11.2.2).

3.5.3 Representation of the ES’s in EBICS messages

The ES’s of an order are represented with the help of the XML element
UserSignatureData (for the subscriber ES, which is defined in the schema file
"ebics_signature_S002.xsd"). The structure BankSignatureData (for the bank ES)
is not usable yet (planned feature).

Each of these substitutes the abstract element EBICSSignatureData. Diagram 4
contains the graphical representation of EBICSSignatureData: AOO5/A006 are
contained in OrderSignatureData. ES’s are configured in accordance with the
Appendix (Chapter 14). In this structured format for signature processes from
A005/A006 on, the customer ID is already contained in the element PartnerID.
The declaration of a differing customer ID for the ES distributed among a number of
customers is only possible with order type HVE by way of special order parameters.
The financial institution’s bank-technical ES is configured analogously to the known
subscriber’s bank-technical ES (see Appendix (Chapter 11.2.2) in comparison with
Appendix (Chapter 14)), wherein the attribute PartnerID is dispensed with in this
case.

[FEBICSSignatureData |

| esig:UserSignatureDataSigBookType

| esig:0OrderSignatureData

| 1.m
‘iUserSignatureData | d___ T T

Diagram 4: XML structures UserSignatureData for the ES’s of an order (in structured
format)

The following steps are necessary to embed the ES’s of an order in EBICS
messages:

= |ssue of an instance document to ebics_orders_H005.xsd or
ebics_signature_S002.xsd that only comprises the element BankSignatureData
(bank ID) or UserSignatureData (subscriber ID).

© EBICS SC Page: 26
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= ZIP compression, encryption, base64-coding of the instance document

Encryption takes place with the transaction key TransactionKey from the XML
branch ebicsRequest/body/DataTransfer/DataEncryptionInfo (see
Chapter 6.2).

= The result is set in the element SignatureData in the branch DataTransfer of

3.6

3.7

the EBICS body (see Chapter 3.1.4).

Preliminary verification [optional]

In the case of upload orders, the subscriber CAN send information in a first
transaction step that the bank system CAN use for prevalidation of the order — insofar
as it supports this functionality. Prevalidation can comprise one or more of the
following checks: Account authorisation verification, limit verification, ES verification.
If (technical) errors occur during prevalidation, it is pointless to continue
transmission of the order — particularly since the order cannot be carried out.

Subscribers can discover whether a financial institution generally supports
prevalidation via the bank parameter query (administrative order type HPD, returned
XML structure HPDResponseOrderData, attribute
ProtocolParams/PreValidation@supported). Supplied parameters for
prevalidations that are not supported by a financial institution are ignored by the
financial institution.

More details on the administrative order type HPD can be found in Chapter 9.2. See
Chapter 5.3 for details on prevalidation.

Technical subscribers

EBICS customer systems can in turn be set up as client-server systems, so-called
multi-user systems. In this case, the server takes on the part of the EBICS client
within the communication with the bank system and as such is responsible for the
transmission of orders in accordance with the EBICS specification.

Towards the bank system, this customer-sided server acts as a "technical
subscriber" which essentially is administrated within the bank system like a (human)
subscriber.

EBICS requests of a technical subscriber and a human subscriber differ from each
other only in the point that for all EBICS requests, the technical subscriber allocates
his subscriber identification to the field SystemID and generates the identification
and authentication signature for the EBICS request.

© EBICS SC Page: 27

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

EBICS responses for the technical subscriber are always encrypted with the
technical subscriber's public encryption key.

The following applies to the technical subscriber:

On principle, the technical subscriber's identification is assigned to the field
SystemlID (in addition to the fields PartnerID and UderID) in the EBICS request. By
the presence of the field SystemID, the bank system detects that the request has
been sent by a technical subscriber.

The technical subscriber issues the identification and authentication signature for
the EBICS request (except of the administrative order types which do not require an
identification and authentication signature).

The technical subscriber can execute all EBICS requests for the subscriber who is
stated in the field UserID.

The technical subscriber cannot issue a bank-technical signature.

The technical subscriber can submit files with a particular transport signature (D file
or submission to the EDS).

The technical subscriber can submit files with bank-technical signatures of human
subscribers. In this case, the technical subscriber does not have to issue a transport
signature.

The following applies to the bank system's verification:

The verification of the identification and authentication signature of the EBICS
request issued by the technical subscriber is performed on the basis of the contents
of the field SystemID.

The order authorisation is verified by the contents of the fields PartnerID and
UserID. The content of the field SystemID is not relevant.

Only if the technical subscriber performs EBICS requests under his own name (the
field UserlD contains the technical subscriber's identification), the according order
authorisation is required for the bank system.

An account verification is not performed for technical subscribers.

As usual, the electronic signature is verified independently of the contents of the
fields SystemID and UserlID.

3.8 Identification and authentication signature

Identification and authentication of the subscriber or the customer system and the
financial institution is necessary in each transaction step to prevent the use of
resources by unauthorised persons at the bank’s end and to prevent unauthorised
state alteration of orders or data.

The identification and authentication signature represents an integral component of
the EBICS protocol as a main XML branch between the EBICS header and body

© EBICS SC Page: 28
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

1.

data. It is generated in accordance with the XML signature standard and has a
number of tasks to fulfil:

Identification and authentication of the (technical) subscriber: With the help of
the identification and authentication signature, the bank system MUST
convince itself of the correctness of the (technical) subscriber identification of
known subscribers or customer systems.

Integrity of the control data/ES(s): Changes — even on the other side of the
TLS transmission path - to the ES(s) as well as the technical and order-
related data (with the exception of order data that is not acquired from the
identification and authentication signature but rather from the bank-technical
signature) are detected with the help of the identification and authentication
signature as long as the XML structure of the signed data remains
unchanged.

The identification and authentication signature (in contrast to the ES that signs the
order data) is configured via the control data and via the ES(s) and MUST be
supplied by both the customer system and the bank system in every transaction
step of each administrative order type (with the exception of the system-related
order types INI, HIA, H3K and HPB, see Chapter 4.4). Identification and
authentication of the bank-technical ES(s) connects the order data that is signed
with this/these ES(s) to the remaining protocol information and thus prevents the
unauthorised exchange of orders together with their ES(s) within an EBICS
transaction.

Details on the identification and authentication signature algorithms that are used
can be found in Chapter 11.1. It is also stipulated here that a canonisation process
(C14N) transmits the data in standardised format before generation and verification
of the signature.

In addition to the XML signature’s inherent structures, precisely those elements (and
their substructures) that possess the attribute marker Qauthenticate="true"
MUST go into the identification and authentication signature for signature
configuration. The occurrence of these attribute markers are stipulated in the XML
schema.

The identification and authentication signature of each EBICS message MUST be
verified by the respective message recipient.

If the identification and authentication signature of an EBICS request cannot be
successfully verified, the bank system cannot assume that the EBICS request
actually originates from the corresponding (technical) subscriber.

In this event, the sender of the EBICS request will receive a corresponding error
code (EBICS_AUTHENTICATION_FAILED). Further details can be found in
Chapters 5.5.1.2.1 and 5.5.1.2.2, in each case under the sub-heading “Verifying the
authenticity of EBICS requests”.

© EBICS SC Page: 29

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

If, on the other hand, the identification and authentication signature of the EBICS
response cannot be successfully verified, the customer system cannot assume that
the EBICS response originates from the expected bank system. In this event, the
relevant EBICS transaction MUST be aborted by the customer system.

The settings of the customer’s software that is used to establish the connection to
the bank system, complying with the requirements of Chapter Fehler!
Verweisquelle konnte nicht gefunden werden., MUST then be verified at the
customer’s end. Furthermore, it MUST be verified whether the financial institution’s
public keys are up-to-date (see also Chapter 5.5.1.2.1, sub-heading “Verifying the
hash values of the bank keys”).

3.9 X.509 data

For cryptographic algorithms (i.e. for identification and authentication, encryption,
signature), Version HOO5 of the EBICS protocol uses public keys in X509-standard
that have been exchanged within the framework of subscriber initialisation between
subscriber and financial institution (for key management see Chapter 4)

The structures of the W3C are referenced directly.

The element group for this is located in the EBICS XML schemas
“ebics_request_H005.xsd” and “ebics_keymgmt_request_HO005.xsd”, for example in
the path ebicsRequest/body/X509Data. The type definition uses the
specification from the XML signature (see Diagram 5).

d=:X509DataType

—
| d=:X5091s=suerSerialType

|

|

| |

| —| d=:X5091=suerSerial [l']_|(_..._
|

|

|

= ls:X5091ssuerHame |

|
|
E\cI*:.:Iﬁl]!lﬁE:ri:allﬁlumhnf:r| |
I

= 1=:X5095KI
X509Data [{]—I—(—m—j}:_l—[—fE}:EI——Fde.:xsu!Euhjemuame |
1.0

| —F ds:X509Certificate |

|

Diagram 5: X509DataType

In EBICS schema version HO05, administrative order types of the key management
require X.509 data to be transmitted together with public keys.

© EBICS SC Page: 30
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

3.10 Supported administrative order types

All standardised, system-related and reserved administrative order types in
accordance with the complete list (see Appendix Chapter 13) are supported by

transparent embedding of the order data into the XML structure.

The administrative order types

Many administrative order types are described in detail in Chapters 8 and 9

(HIA/H3K: Chapter 4.4.1, HCA/HCS: Chapter 4.6.1). A complete list can be found in

chapter 13.

Information on the support on the part of the bank (mandatory, optional, conditional)
see also chapter 13.

3.11 Order parameters

The element OrderParams has been integrated into the fixed control data (under
ebicsRequest/header/static/OrderDetails) for the transmission of order

parameters that are not part of the order data. Depending on the administrative
order type, this abstract element has a specific concrete characteristic:

BTDOrderParams i
BTUOrderParams i

HVDOrderParams ?

HVEOrderParams i

HV50rderParams ?

HVWTOrderParams ?

HVUOrderParams ?

HVZOrderParams ?

© EBICS SC

Page: 31
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 6: OrderParams

* BTDOrderParams for the download of a business transaction format (BTF)
* BTUOrderParams forthe upload of a business transaction format (BTF)

* HVDOrderParams in the case of order parameters for HVD

" HVEOrderParams in the case of order parameters for HVE

= HVSOrderParams in the case of order parameters for HVS
" HVTOrderParams in the case of order parameters for HVT
* HVUOrderParams in the case of order parameters for HYU

* HVZOrderParams in the case of order parameters for HVZ

The structures for the order parameters of BTD and BTU are explained in chapter 5.
The structures of the order parameters for administrative order types HVD, HVE,
HVS, HVT and HVU are explained in greater detail in Chapter 8.3.

3.12 Flow of the EBICS transactions

This chapter contains a simplified description of the protocol sequence for the
transmission of a remote data transmission order via EBICS that allows for the
stipulations in the previous chapter.

The transmission takes place in an EBICS transaction that can comprise several
transaction steps. A transaction step is a pair, comprising an EBICS request and the
corresponding EBICS response.

The first transaction step is the transaction initialisation step. Subscriber-related
authorisation verifications are carried out in this step, such as e.g. the verification of
authorisations for specific BTF identifiers. Successful authorisation verification is a
prerequisite for continuation of the transaction. Furthermore, the ES’s of the order
are transmitted in this transaction step: in the case of upload orders, the ES’s of the
signatory are transmitted in the EBICS request; in the case of download orders,
possibly the financial institution’s bank-technical ES is transmitted in the EBICS
response.

After transaction initialisation, a number of transaction steps usually follow in which
the segments of order data are transmitted sequentially and in consecutive order.

Upload and download orders are always sent from the client to the server.

¢ In the customer to bank scenario the customer is always the client and the bank
is always the server.

¢ In the communication between financial market infrastructures one party (which
activates up- and downloads) is the client and the other party is the server.

© EBICS SC Page: 32
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Note: The specification is written in the style of a customer-bank usage. In the
communication between financial market infrastructures it reads as follows:
The active party (submits upload and download requests), has the role of the
customer and the other party that of the bank.

Upload orders that are sent to the bank system via EBICS can be authorised using
two different methods:

Method 1: Authorisation by means of one or more bank-technical ES

The bank-technical ES’s of an order file must be given by different subscribers. In
case of the EDS, these subscribers may in special cases belong to different
customers (customer-ID-spanning signature). The ES’s can be submitted to the
financial institution by different ways , while every ES submitted with a single EBICS
transaction originates from the same customer.

1. Submission of the order data together with one or more ES's by way of an upload
order with a present signature flag All ES's that are submitted in this manner
originate from the customer of the party that submitted the order.

If the transmitted ES's are not sufficient for the bank-technical approval

a) the order is transferred to the EDS if the optional attribute @requestEDS is
present. This means that the customer is able to add EDSs (electronic distributed
signatures) via HVE .

b) the order is rejected if the optional attribute @requestEDS is not present.

2. Submission of outstanding bank-technical ES’s with the help of
administrative_order type HVE
If an ES is submitted via an HVE transaction, this ES has to originate from the
customer of the party that submitted the HVE transaction:
HVE permits the special case of the customer-ID-spanning signature because the
ES's submitted via HVE do not necessarily have to originate from the customer of
the party that submits the orders.

Method 2: Authorisation by means of an accompanying note signed by hand

For the transmission of the order file the signature flag of the upload order is not
present.

Within the framework of the EBICS transaction, an ES of signature class "T" is
transmitted together with the data of the order. The order is not passed on to the
EDS but directly to the bank-specific post-processing.

If the submitting subscriber possesses the authorisation for issuing a bank-technical
ES in the bank system and signatures are submitted without the signature flag these
signatures are strictly assessed only as transport signatures. The order must not be
passed to the EDS either.

© EBICS SC Page: 33
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The meaning and admissible settings of the signature flag are described in chapter
3.14.

Transmission of an upload order with a (compressed, encoded and base64-coded)
order data volume of 3 MB is represented by way of example with the help of the
sequence diagram in Diagram 7. The EBICS transaction relating to an upload order
is terminated as soon as the last order data segment has been successfully
transmitted to the financial institution.

customer system bank system
transaction initialisation, transfer of EUs R
ok, unique transaction ID = xxx
- = = = = e e = = e e = = =
transfer of data segment 1 for transaction xxx
ok
B e e e e T T e e e
transfer of data segment 2 for transaction xxx N
ok
= = = == o e = e e e e e e e e e e e e e = |
transfer of data segment 3 for transaction xxx R
ok
= = = = = e o

Diagram 7: Example of the sequence of an EBICS transaction for an upload order

Transmission of a download order with a (compressed, encoded and base64-coded)
order data volume of 3 MB is represented by way of example with the help of the
sequence diagram in Diagram 8. In the case of download orders, receipt of the
download data is confirmed with an acknowledgement step. After this, the EBICS
transaction for the download order is terminated.

© EBICS SC Page: 34
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

customer system bank system
transaction initialisation R
ok, unique transaction ID = xxXx, transfer of data segment 1
<— ———
request data segment 2 for transaction xxx
< ok, transfer of data segment 2
request data segment 3 for transaction xxx N
. ok, transfer of data segment 3
receipt for transaction xxx (acknowledgement) R
ok
= = = = = e = = === ===

Diagram 8: Example of the sequence of an EBICS transaction for a download order

Further details on the sequence of EBICS transactions can be found in Chapter 5.

3.13 Interpretation of BTF element combinations by the bank server

This chapter describes how the BTF element groups service and service filter respectively
which are delivered by EBICS requests are interpreted by the bank server:

Adminstrative EDS download orders:
Only delivered BTF elements in the filter are considered, missing (optional) elements are “wildcards”.
The user will get all available matching orders, authorization of the user assumed.

Upload Requests:

The BTF elements must be complete and correct (corresponding to the uploaded case of business
transaction). This means that also a missing (optional) element has a meaning!

But it depends on the bank (contract) how the authorizations are defined and stored:

It is independent of the EBICS communication, whether there is a model which stores all used/allowed
single BTF combinations or hierarchical models where groups of business transactions are agreed
(e.g. user is allowed to send SDD not dependent on service options and/or scopes)

© EBICS SC Page: 35
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Downloading files:
The BTF elements must be complete and correct (corresponding to the type of file which the user
wants to download). This means that also a missing (optional) element has a meaning!

HKD / HTD:

Complete declaration of each BTF element combination the user/partner is authorized to in the
HKD/HTD response. This means again that a missing elements has a meaning.

3.14 Interpretation of ES /EDS flag combinations by the bank server

This table describes the meaning of the flags for ES and electronic distributed signature

(EDS):
ES | EDS | Condition Reaction Matches with
flag | Flag disestablished order
attribute
(for information only)
X - ES must be Rejection, if ES not sufficient OZHNN
sufficient (“Authorization failed” 090003)
X X Customer has a If sufficient number of valid ES, OZHNN
contract for EDS | EDS Flag is ignored.
(allowed to do Rejection, if no contract and
HVE) number of ES not sufficient.
(“EBICS Distributed Signature
authorization failed” 091007)
- - File is not Depends on the contract: DZHNN
signed/authorized | If signatures are needed and no
within EBICS signature outside EBICS is
agreed the order is rejected
(“Authorization failed” 090003)
© EBICS SC Page: 36

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4 Key management
4.1 Overview of the keys used

The EBICS protocol provides three RSA key pairs for each subscriber. These are
used for the following purposes:

bank-technical/technical ES of the order data that the subscriber/client system sends
to the bank system

identification and authentication of the subscriber by the bank system via identification
and authentication signature

decryption of the (symmetrical) transaction key used to encrypt the order data that the
subscriber retrieves from the bank system.

Based on their use, one also talks of

public / private bank-technical keys

public / private identification and authentication keys

public / private encryption keys

EBICS allows the use of three different key pairs per subscriber. In doing this,
EBICS promotes the use of at least two different key pairs for each subscriber:

One key pair is used exclusively for the bank-technical electronic signature.

The use of one single key pair is allowed for identification and authentication of the
subscriber by the bank system AND decryption of transaction keys.

Analogously to the subscriber keys, EBICS provides three different RSA key pairs
for the bank system. These are used for the following purposes:

= bank-technical ES of the order data that is retrieved by a
subscriber from the bank system
In EBICS Version “HO05” the financial institution’s bank-technical ES is only planned
(see Chapter 3.5.2).

identification and authentication of the financial institution by the subscriber via
identification and authentication signature

Decryption of the (symmetrical) transaction key to encrypt bank-technical order data
sent by a subscriber to the financial institution.

The same restrictions as for the subscriber keys apply with regard to the use of an
RSA key pair for different purposes.

© EBICS SC Page: 37
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The subscriber’s keys are connected to processes that the subscriber would like to
use for generation/verification of the ES, for generation/verification of the
identification and authentication signature and for the encryption of order data.
These processes are identified by unambiguous Versions so that different
subscribers can use e.g. different processes for the ES. A prerequisite of EBICS is
that the respective processes are administrated in the bank system for each
subscriber.

Version “HO05” of the EBICS protocol allows for the use of the following processes:

= “X002” for the identification and authentication signature

= "A005“ or "A006" for the ES

= “EQ02” for the encryption.

4.2

Details of these processes can be found in the Appendix (Chapter 11.1, Chapter
11.2 and Chapter 11.3).

Subscribers of the same customer generally use the same processes for
identification and authentication signature, encryption and ES.

A subscriber’s orders can be delivered by a technical subscriber if both subscribers
use the same processes for identification and authentication signature, encryption
and bank-technical signature. In this case, administration of the public bank keys for
all subscribers that wish to work with the same processes can be centralised at the
customer’s end.

Representation of the public keys

EBICS defines the administrative order types HIA, HCA, HCS and HPB, whose
bank-technical order data constitutes public keys of the financial institution or the
subscriber. For these order types, embedding of the public keys in EBICS messages
takes place using newly-defined types based on the XML schema (see schema
definition file ebics_types H005.xsd). These types are contained in the following
table:

Key type XML type

Identification and authentication key | AuthenticationPubKeyInfoType
Bank-technical key SignaturePubKeyInfoType
Encryption key EncryptionPubKeyInfoType

The graphical representation of the XML types
AuthenticationPubKeyInfoType, SignaturePubKeyInfoType,
EncryptionPubKeyInfoType is contained in Diagram 9, Diagram 10, and finally
Diagram 11.

© EBICS SC Page: 38

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The XML structures are composed in a similar manner to one another: They contain
information relating to the usedX.509 certificate. Moreover, the version of the
process for configuration/verification of the identification and authentication
signature (see element AuthenticationVersion)is a component of the
identification and authentication key. Analogously, the version of the encryption
process is a component of the encryption key and the version of the bank-technical
ES is a component of the bank-technical key.

|' _______ 1

—H-—JEI—IEEIJi-:s:Authentiu::ation‘l.l’ersion |

Diagram 9: Definition of the XML schema type AuthenticationPubKeyInfoType

—--—:EI—FEIjics:Enc:r!.rptionUersion |

Diagram 11: Definition of the XML schema type EncryptionPubKeylInfoType

© EBICS SC Page: 39
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.3 Actions within key management

Actual processing of the key management upload orders must take place
synchronously to their transmission via EBICS. Hence processing must be
completed before the final EBICS response of this transmission is sent to the
subscriber.

This requirement applies in the case of INI and HIA as well as H3K (see Chapter
4.4.1) so that execution of subscriber initialisation is not delayed unnecessarily. It
also applies equally in the case of SPR (see Chapter 4.5) so that the subscriber
revocation is immediately activated. Subsequently-initialised EBICS transactions for
the transmission of a bank-technical order are rejected at EBICS protocol level until
the subscriber has again attained the state “Ready”. (Subscriber ES’s that have
been successfully verified before the suspension also remain valid after the
suspension. Such an ES can continue to be used for authorisation of an open order
within the framework of the EDS).

Finally, this requirement also applies for all PUB, HCS, and HCA (see Chapter
4.6.1) to allow successful processing of immediately-following EBICS transactions
from the relevant subscriber that already use the updated keys. (Subscriber ES’s
that have been successfully verified before execution of PUB or HCS, respectively,
also remain valid after the processing of PUB or HCS and the associated
amendment of the bank-technical subscriber key. Such an ES can continue to be
used for authorisation of an open order within the framework of the EDS).

4.4 Initialisation

A range of prerequisites must be fulfilled by the subscriber of a customer in order for
them to be able to implement bank-technical EBICS transactions with a particular
financial institution.

The basic prerequisite is the conclusion of a contract between customer and
financial institution. In this contract it will be agreed as to which business
transactions (BTF identifiers) the customer will conduct with the financial institution,
which accounts are concerned, which of the customer’s subscribers work with the
system and the authorisations that these subscribers will possess.

If the customer does not yet have access to a corresponding customer product, they
will receive the client software and the financial institution’s access data (bank
parameters) after conclusion of the contract. The financial institution will set up the
customer and subscriber master data in the bank system in accordance with the
contractual agreements. In doing this, the individual subscribers will receive the
state “New”.

Details of the contractual agreements are not a subject of this standard, they are to
be arranged individually between the customer and the financial institution.

© EBICS SC Page: 40
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Other prerequisites are successful subscriber initialisation and download of the
financial institution’s public keys by the subscriber. The necessary steps that must
be taken by the financial institution, the customer and the subscriber and the
chronological dependencies of these steps are contained in Diagram 12. Diagram
13 shows an example of a process by way of a sequence diagram. The state of the
public bank keys at the subscriber's end is shown on the life-line of the subscriber
system. Correspondingly, the state of the public subscriber keys at the bank’s end
and the state of the subscriber themselves are shown on the lifeline of the bank
system. Details of these diagrams are explained in the following chapters.

Bank Partner User

}

Sign agreement between Sign agreement between
credit institute and partner credit institute and partner

Add the users of the partner to Possibly installation of client software;
the credit institute's User Management Customize according to
the bank parameter

[Key pairs already exist]

| l

Key pair generation for the EU } Key pair generation for
authentication signature and encryption

else

INI execution
via EBICS

HIA execution
via EBICS

Generate the initialisation letter for Generate the initialisation letter for
the public EU-key the public authentication key
l and the public encryption key
Mail the manually signed Mail the manually signed
initialisation letter to the credit institute initialisation letter to the credit institute

[

!

[Release of the public EU-key, }

public authentication key,
public encryption key

Release of the user

l

Retrieve the credit institute’s public keys:
HPB via EBICS

I

[Compare the credit institute's public keys }

as retrieved from 2 different communication channels
independent from each other

&

Diagram 12: Necessary steps prior to actual processing of business transactions via
EBICS (using INI / HIA)

© EBICS SC Page: 41
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

Customer system

Bank system

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key cred

it institute [missing]

User [New]
Public authentication key User [missing]
Public encryption key User [missing]
Public EU-key User [missing]

INI-request(public EU-key User)

INI-response

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key cred

it institute [missing]

User [Partly initialised(INI)]]

Public authentication key User [missing]
Public encryption key User [missing]
Public EU-key User [New]

HIA-request(public authentication key User,
public encryption key User)

HIA-response

Public authentication key credit institute [missing]
Public encryption key credit institute [missing]

Public EU-key cred

it institute [missing]

User [Initialised]
Public authentication key User [New]
Public encryption key User [New]
Public EU-key User [New]

Initialisation letter INI

Initialisation letter HIA

Public authentication key credit i

Public encryption key credit institute [missing]

Public EU-key credit institute [mi

Release of User' public keys
and of User itself

nstitute [missing] User [Ready]

Public authentication key User [Released]

ssing] Public encryption key User [Released]

Public EU-key User [Released]

HPB-request

HPB-response(public authentication key credit institute,
public EU-key credit institute,
public encryption key credit institute)

Public authentication key credit institute [New]
Public encryption key credit institute [New]
Public EU-key credit institute [New]

Comparison credit institute's
public keys

User [Ready]

Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

Public authentication key credit institute [Released]
Public encryption key credit institute [Released]
Public EU-key credit institute [Released]

User [Ready]

Public authentication key User [Released]
Public encryption key User [Released]
Public EU-key User [Released]

Diagram 13: Process example: Subscriber initialisation followed by download and

verification of the bank keys (using INI / HIA)

© EBICS SC

Page: 42
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.4.1 Subscriber initialisation

4.4.1.1 General description

Transmission of the subscriber’s public keys to the bank system is necessary for
initialisation of the subscriber with the financial institution. The supported versions
for the ES, the encryption and the identification and authentication signature are
components of the bank parameters. The subscriber’s bank-technical key must be
newly generated if the subscriber does not have a suitable bank-technical key or
does not wish to use an existing bank-technical key for the new bank connection.
The same applies for the encryption key and the identification and authentication
key.

The subscriber transmits his public keys to the financial institution as follows:

Alternative 1 (by two independent communication paths):

= via EBICS by means of the following administrative order types:
- INI: send the public bank-technical key (key for the ES / authorisation key).

- HIA: send the public identification and authentication key and the public encryption
key.

Transmission of the public subscriber keys to the financial institution via INI and HIA
is referred to as subscriber initialisation

= by post with initialisation letters signed by the subscriber.
The use of signed initialisation letters permits the financial institution to:

= verify the authenticity of the public subscriber’s keys transmitted via EBICS as a
prerequisite for the activation of subscribers

= guarantee the reproducibility of subscribers’ key histories by storing the initialisation
letters.

The sequence for processing of INI and HIA is not fixed, but within the framework of
subscriber initialisation precisely one INI order and precisely one HIA order will be
implemented. Transmission of the public subscriber keys via two separate orders in
any order requires definition of the subscriber states “Partially initialised(INI)” and
“Partially initialised(HIA)”. Within the framework of subscriber initialisation, the
subscriber takes on the corresponding state depending on whether the first
successful order is INI or HIA.

This initialisation procedure (alternative 1) is always admissible: for RSA keys
without as well as for keys with certificates issued by a CA. However, it is assumed
that in each case initialisation letters are used for alternative 1. The public keys of
the subscriber/user have still to be sent to the bank by the administrative order types
INI (public bank-technical key) and HIA (public identification and authentication key
as well as the public encryption key). However, in order to guarantee the authenticity
of the subscriber’s (user’s) public keys, it must be ensured that the bank receives

© EBICS SC Page: 43
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

the public bank keys via a second, independent communication path (initialisation
letter for INI and for HIA, respectively). Having received the keys via different
communication paths, the bank first compares the keys before approving them.
Alternative 1 can also be used if alternative 2 fails.

For details and workflow concerning alternative 1, see chapter 4.4.1.2

Alternative 2 (in one step):

This alternative is only possible if the bank-technical (authorisation) key is based on
a certificate issued by a CA, the authenticity of this particular public key is
guaranteed by a CA as long as customer and bank have agreed to use this certain
certificate and as long as it is valid. In this case, the initialisation letter can be
resigned.

= via EBICS by means of the administrative order type:

- H3K: send the public keys for the bank-technical signature (signature for
authorisation; ES), and identification and authentication as well as encryption keys.

For the initialisation via CA-issued certificates, the administrative order type H3K
simplifies the workflow:

1. All public keys can be sent in one step (H3K-request) using a certification issued by
a CA for the bank-technical (ES) key.
2. INI and HIA letters are not necessary.

Details and workflow see chapter 4.4.1.3

4.4.1.2 Initialisation via INI and HIA

4.4.1.2.1 INI

Processing of INI is permissible if the state of the respective subscriber is “New”,
“Suspended” or “Partially initialised(HIA)”. INI comprises a single EBICS
request/response pair. The following applies for the EBICS request of INI:

= it does not require an identification and authentication signature since the subscriber’s
public identification and authentication key has not yet been activated by the
financial institution and hence cannot be used for verification.

= it does not contain a bank-technical signature, since the subscriber’s public bank-
technical key is being transmitted for the first time in this request. This bank-
technical key cannot be used by the financial institution to verification the bank-
technical signature since its authenticity has not yet been ascertained.

= it contains the order data, i.e. the subscriber’'s public bank-technical key in
unencrypted form since the subscriber does not yet have the financial institution’s
public encryption key (at least in the event of first initialisation).

The flow diagram in Diagram 14 represents the processing at the bank’s end that
takes place on receipt of an INI request. Error situations that result from an invalid
combination of customer/subscriber ID or an inadmissible subscriber state are not
passed directly to the sender of the INI request. Instead, the sender receives the

© EBICS SC Page: 44
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

technical error code

EBICS_INVALID_USER_OR_USER_STATE. INI does not give any errors of the
type “Unknown subscriber” or “Inadmissible subscriber state” so that potential
attackers are not given precise information about the validity of subscriber IDs or the
state of subscribers. On the other hand, internal documentation must take place on
the part of the financial institution to record the precise reason for the error.

The flow diagram provides verification of the subscriber state so that INI requests
are rejected on the EBICS level if the subscriber state is inadmissible for INI.
Admissible states for INI are: “New”, “Suspended” and “Partially initialised(HIA)".
Here, the state of the subscriber is verified from the header data of the request. The
order data of the INI request (see Chapter 4.4.1.2.5.1) merely contains the
subscriber whose bank-technical key is to be transmitted. For this reason, the
subscriber from the header data should correspond with the subscriber from the
order data. The EBICS protocol does not provide a verification for this
correspondence. However, before actual processing of the order the state of the
subscriber is verified (again) which is a part of the order data of INI.

Processing of an INI order can return the following error codes:

= EBICS_KEYMGMT_UNSUPPORTED_VERSION_SIGNATURE
This business related error occurs when the order data contains an inadmissible
version of the bank-technical signature process

= EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE
This business related error occurs when the order data contains a bank-technical
key of inadmissible length

* EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.2.5.1)

= EBICS_INVALID_USER_OR_USER_STATE
This technical error occurs when the order data contains a subscriber that is either
unknown or whose state is inadmissible for INI. The following subscriber states are
admissible: New, Suspended, Partially initialised (HIA).

= For Return codes relating to CA-issued certificates, refer to Annex 1

© EBICS SC Page: 45
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

.—b[Receiving INI request]

\ 4
T=0
RCF=0
y

A

Validity check
user ID/ partner ID

[RC # 0] [RCT = EBICS_INVALID_USER_OR_USER_STATE
'l RCF =0
[RC=0]

State check for user
Valid states: New, Locked,
Partly Initialised(HIA)

A\ 4
[RC#0] | rer= EBICS_INVALID_USER_OR_USER_STATE >
'L RCF=0
[RC=0]

INI order check and execution]

[RCis a
[RC#0] R non-technical error] | reT=0
- "| RCF=RC

[RC =0] else

[INI response creation

A 4

@4—[Sending INI response]

Diagram 14: Processing of an INI request at the bank’s end

The EBICS response for INI does not contain an identification and authentication
signature of the financial institution since the subscriber does not yet have the
financial institution’s public identification and authentication key with which they can
carry out a verification.

© EBICS SC Page: 46
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

In Diagram 13 INI is carried out before HIA, and correspondingly the subscriber
changes from the state “New” to the state “Partially initialised(INI)". The state
“Partially initialised(INI)” means:

The subscriber’s bank-technical key is available to the bank system, although it has
not yet been activated

The bank system does not (yet) have the subscriber’s public identification and
authentication key or public encryption key.

In this state, the subscriber can only carry out one of the following two actions:

Implement administrative order type HIA and then transfer into the state “Initialised”:
Orders that are not equal to HIA that are submitted by the subscriber in this state
are rejected by the bank system. Bank-technical signatures of the subscriber
relating to existing orders are evaluated as invalid if the subscriber has the state
“Partially initialised(INI)” at the time of verification.

Have themselves suspended by the financial institution via telephone call:
Following this, the only option is re-initialisation of the subscriber.

After the successful processing of INI, the subscriber sends a signed initialisation
letter for INI. See Chapter 4.4.1.2.3 for details of the content of the initialisation
letter.

4.4.1.2.2 HIA

Processing of HIA is permissible if the state of the subscriber is “New”, “Suspended”
or “Partially initialised (INI)”. HIA comprises a single EBICS request/response pair.
The following applies for the EBICS request of HIA:

= it does not contain an identification and authentication signature, since the
subscriber’s public identification and authentication key is being sent for the first
time in this request. This subscriber’s public identification and authentication key
cannot be used by the financial institution to verify the identification and
authentication signature since its authenticity has not yet been ascertained.

= it does not contain a bank-technical signature since the subscriber’s public bank-
technical key has not yet been activated by the financial institution and hence
cannot be used for verification.

= it contains the order data, i.e. the subscriber’s public encryption key and public
identification and authentication key in unencrypted form since the subscriber does
not yet have the financial institution’s public encryption key (at least on the event of
first initialisation).

The flow diagram in Diagram 15 represents the processing at the bank’s end that
takes place on receipt of an HIA request. In an analogous manner to INI, error
situations that result from an invalid combination of customer/subscriber ID or an
inadmissible subscriber state are also here not passed directly to the sender of the

© EBICS SC Page: 47
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HIA request. Instead, the sender receives the technical error code
EBICS_INVALID_USER_OR_USER_STATE. HIA does not give any errors of the
type “Unknown subscriber” or “Inadmissible subscriber state” so that potential
attackers are not given precise information about the validity of subscriber IDs or the
state of subscribers. Also analogously to INI, internal documentation must take
place on the part of the financial institution to record the precise reason for the error.
The flow diagram provides verification of the subscriber state so that HIA requests
are rejected on the EBICS level if the subscriber state is inadmissible for HIA.
Admissible states for HIA are: “New”, “Suspended” and “Partially initialised(INI)”.
Here, the state of the subscriber is verified from the header data of the request. The
order data of the HIA request (see Chapter 4.4.1.2.5.1) merely contains the
subscriber whose identification and authentication key and encryption key are to be
sent. For this reason, the subscriber from the header data should correspond with
the subscriber from the order data. The EBICS protocol does not provide a
verification for this correspondence. However, before actual processing of the order
the state of the subscriber is verified (again) which is a part of the order data of HIA.

Processing of an HIA order can return the following error codes:

= EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION
This business related error occurs when the order data contains an inadmissible
version of the encryption process

= EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION
This business related error occurs when the order data contains an inadmissible
version of the identification and authentication signature process

* EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION
This business related error occurs when the order data contains an encryption key
of inadmissible length

= EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION
This business related error occurs when the order data contains an identification
and authentication key of inadmissible length

= EBICS_INVALID_ORDER_DATA_FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.2.5.1)

= EBICS_INVALID_USER_OR_USER_STATE
This technical error occurs when the order data contains a subscriber that is either
invalid or whose state is inadmissible for HIA. The following subscriber states are
admissible: New, suspended, Partially initialised (INI).

= For Return codes relating to CA-issued certificates, refer to Annex 1

© EBICS SC Page: 48
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

0—»[Receiving HIA request]

A 4
RCT =0
RCF=0

A 4

Valldlty check
user ID/ partner ID

L[mn:mmgmwmqp%apap%&smm

[RC #0]
[RC=0]

State check for user
Valid states: New, Locked,
Partly Initialised(INI)

RCF=0

]_

f RCT = EBICS_INVALID_USER_OR_USER_STATE

»
»

[RC #0]
[RC=0]

HIA order check and execution]

RCF=0

"

[RCis a
non-technical error] | RcT =0

> | RCcF=RC

[RC # 0]
[RC = 0]

[HIA response creation

A 4

@4—[Sending HIA response]

Diagram 15: Processing an HIA request at the bank’s end

The EBICS response for HIA does not contain an identification and authentication

signature of the financial institution since the subscriber does not yet have the
financial institution’s public identification and authentication key with which they can

carry out a verification.

© EBICS SC

Page: 49
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The meaning of the state “Partially initialised (HIA)“, that has not been taken into
consideration in Diagram 13 is as follows:

The bank system has the subscriber’s public identification and authentication key and
public encryption key. Neither of these have been activated by the bank system

The bank system does not (yet) have the subscriber’s public bank-technical key.

In this state, the subscriber can only carry out one of the following two actions:

Carry out administrative order type INI:
Orders that are not equal to INI that are submitted by the subscriber in this state are
rejected by the bank system. Bank-technical signhatures of the subscriber relating to
existing orders are evaluated as invalid if the subscriber has the state “Partially
initialised(HIA)” at the time of verification.

Have themselves suspended by the financial institution via telephone call:
Following this, the only option is re-initialisation of the subscriber.

After the successful processing of HIA, the subscriber sends a signed initialisation
letter for HIA to the financial institution. See Chapter 4.4.1.2.3 for details of the
content of the initialisation letter.

4.4.1.2 3Initialisation letters
Initialisation letters for INI contain the public bank-technical subscriber certificate,

initialisation letters for HIA contain the subscriber’s public identification and
authentication certificate and the subscriber’s public encryption certificate. All
certificates are presented in PEM format. In addition to the public subscriber
certificates, the initialisation letters contain the following data:

= User name (optional): customer software-internal subscriber's name

= Date: Date of processing of the corresponding EBICS order

= Time: Time of processing of the corresponding EBICS order

= Recipient bank

= Subscriber ID

= Customer ID.

In addition to the public subscriber certificate, the initialisation letter contains the
following data:

= Purpose of the public subscriber certificate:

- Bank-technical electronic signature

© EBICS SC Page: 50
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- Identification and authentication signature
- Encryption.
= Processes:
- Bank-technical electronic signature process: A005 or A006
- Identification and authentication signature process: X002
- Encryption process: E002.
= Hash value of the public certificate in hexadecimal representation

- The initialisation letter for INI contains the SHA-256 hash value of the certificate for
the ES (in the case of A005 or A006, respectively). The composition of the hash
value is described in chapter 14 for both processes.

- The initialisation letter for HIA contains the SHA-256 hash value of the public
identification and authentication certificate and the SHA-256 hash value of the
public encryption certificate. The printed SHA-256 hash values of the certificate
X002, E002 as well as of the AO05 and A006 certificate are composed by
calculating the SHA-256 hash value of the certificate in DER binary format, and
presenting the resulting byte array (32 bytes) into hexadecimal representation (64
char) and in uppercase.

Initialisation letters for INI contain the public bank-technical subscriber certificate of
the user, initialisation letters for HIA contain the subscriber’s public identification and
authentication certificate and the subscriber’s public encryption certificate. Examples
of initialisation letters can be found in the Appendix (Chapter 11.5.1).

4.4.1.2.4Activation of the subscriber by the financial institution

After successful processing of INI and HIA, the subscriber is initially set to the state
“Initialised”: the bank system has all necessary public keys for the subscriber, but it
will not have activated them yet. Subscribers that are set to the state “Initialised”
cannot submit orders or signatures via EBICS: all attempts to do so will be rejected
by the bank system.

After successful verification of the initialisation letters by the financial institution, the
public subscriber keys are activated and the subscriber’s state is set to “Ready” in
the bank system. The state “Ready” means that the bank has all of the information
necessary for the subscriber to successfully implement submission of orders or
signatures. See also Diagram 13. The subscriber can also especially download the
financial institution’s so-called bank parameters via the administrative order type
HPD (see Chapter 9.2).

Diagram 16 clarifies once again the state transitions of a subscriber as described
above. Deletion of subscribers from bank systems’ subscriber administration

© EBICS SC Page: 51
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

databases is not covered in this standard. For this reason, a further state “Deleted”
and an end state will not be displayed.

oD Com

INI HIA

G’artly initialised (INI)) Gartly initialised (HIA))

HIA INI

(Initialised)

User release by the credit
institute

SPR, call credit institute

PUB & HCA
or HCS

Diagram 16: State transition diagram for subscribers

The (renewed) processing of INI or HIA is not admissible in the subscriber state
“‘Ready”. This is to prevent unintentional transfer of the subscriber from the state
“‘Ready” to the state “Partially initialised(INI)” or “Partially initialised(HIA)". The result
of this would be that the affected subscriber would not be able to implement any
further bank-technical orders for the time being.

Subscribers that are set to the state “Ready” must firstly suspend their remote
access data transmission to the bank system before they can carry out renewed
subscriber initialisation. Details on the suspension of subscribers can be found in
Chapter 4.5.

© EBICS SC Page: 52
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.4.1.2.5Description of the EBICS messages

4.4.1.2.5.1 Format of the order data
The order data for INI is an instance document that conforms with
ebics_signature_S002.xsd and comprises the top-level element
SignaturePubKeyOrderData.
SignaturePubKeyOrderData is defined as follows via the XML schema:

| esig:SignaturePubKeyOrderDataType

| —| esig:SignaturePubKeyinfo

| public signature ke,

|

|

|

| |

SignaturePubKeyOrderData [%]—I—(—--—:E— Custarner-I0, I
|

|

|

Elernent For public key file independent | Eesig:Userll]
of arder type ar tranzaction [
Geschifizworfall, ' zerIDn

Diagram 17: Definition of the XML schema element SignaturePubKeyOrderData for
INI order data (identical to PUB, see respective chapter)

The order data for HIA is an instance document that conforms with
ebics_orders_HO005.xsd and comprises the top-level element
HIARequestOrderData. HIARequestOrderData is defined as follows via the
XML schema:

| ebicz:HIARequestOrderDataType

—| AuthenticationPubKeyinfo |

|
|
|
|
HIARequestOrderData [—=— [F— PartneriD |

Diagram 18: Definition of the XML schema element HIARequestOrderData for HIA
order data

© EBICS SC Page: 53
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The order data for INI and HIA are each compressed and base64-coded and
embedded into the corresponding EBICS request.

4.4.1.2.5.2 Description and example messages

This chapter describes the EBICS messages for the administrative order types INI
and HIA. INI and HIA requests are instance documents that conform with
ebics_keymgmt_request_H005.xsd with the top-level element
ebicsUnsecuredRequest. INI and HIA responses are instance documents that
conform with ebics_keymgmt_response_H005.xsd with the top-level element
ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding
XML elements are given in brackets in XPath notation. The following conventions
apply:
- Data that is fundamentally optional is marked “(optional)”.
- Data that may only be missing under certain conditions is instead marked
“(conditional)”.
- Optional XML elements of the EBICS messages that are missing in the description
may not appear in the EBICS message.
- Optional XML elements in the EBICS messages that appear in the description
without the designation “(optional)” or “(conditional)’ must always be placed in
accordance with the description.

This description is supplemented by examples.

= Transmission of the following data in the INI request (see example in Diagram 19)
Host ID of the EBCIS bank computer system
(ebicsUnsecuredRequest/header/static/HostId)

Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/UserID) whose public bank-
technical key is to be sent to the financial institution

(Optional) technical subscribers
(ebicsUnsecuredRequest/header/static/PartnerID
ebicsUnsecuredRequest/header/static/SystemID)

SystemID can be contained in the message if the customer system is a multi-user
system. Since INI requests do not contain an identification and authentication
signature and the order data is unencrypted, declaration of the SystemID is optional.
- (Optional) information on the customer product
(ebicsUnsecuredRequest/header/static/Product)

- Administrative Order type
(ebicsUnsecuredRequest/header/static/OrderDetails/AdminOrderType) set to “INI”
- Security medium for the subscriber’s bank-technical

key (ebicsUnsecuredRequest/header/static/SecurityMedium)

© EBICS SC Page: 54
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The admissible settings are listed in the Appendix (Chapter 12.3)
- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsUnsecuredRequest

xmlns="urn:org:ebics:HO005" xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics_keymgmt request H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>
<OrderDetails>
<AdminOrderType>INI</AdminOrderType>
</OrderDetails>
<SecurityMedium>0200</SecurityMedium>
</static>
<mutable/>
</header>
<body>
<DataTransfer>
<!--INI file compressed and base64 encoded -->

<OrderData>

</OrderData>
</DataTransfer>
</body>
</ebicsUnsecuredRequest>

Diagram 19: EBICS request for administrative order type INI

= Transmission of the following data in the INI response (see example in Diagram
20)

- Bank-technical return code
(ebicsKeyManagementResponse/body/ReturnCode)

- Order number (ebicsKeyManagementResponsel/header/mutable/OrderID)

This number is assigned by the bank server automatically.

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text
(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_ keymgmt response HO005.xsd"
Version="H005" Revision="1">

<header authenticate="true">

© EBICS SC Page: 55
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<static/>
<mutable>
<OrderID>A101</OrderID>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS_OK] OK</ReportText>
</mutable>
</header>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsKeyManagementResponse>

Diagram 20: EBICS response for administrative order type INI

= Transmission of the following data in the HIA request (analogous to INI, see
example in Diagram 21)

- Host ID of the EBICS bank computer system
(ebicsUnsecuredRequest/header/static/HostId)

- Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/UserID) whose public
identification and authentication key as well as public encryption key are to be
sent to the financial institution

- (Optional) technical subscribers
(ebicsUnsecuredRequest/header/static/PartnerID,
ebicsUnsecuredRequest/header/static/SystemID)

SystemID can be contained in the message if the customer system is a multi-
user system. Since HIA requests do not contain an identification and
authentication signature and the order data is unencrypted, declaration of
SystemID is optional.

- (Optional) information on the customer product
(ebicsUnsecuredRequest/header/static/Product)

- Administrative Order
type(ebicsUnsecuredRequest/header/static/OrderDetails/AdminOr
derType) setto “HIA”

- Security medium for the subscriber’s bank-technical
key (ebicsUnsecuredRequest/header/static/SecurityMedium) setto
“0000".
The security medium for the subscriber’s bank-technical key is set to “0000”
since HIA orders neither transmit bank-technical keys nor contain ES’s.

- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsUnsecuredRequest

xmlns=" urn:org:ebics:HO005"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt request HO005.xsd"
Version="H005" Revision="1">

<header authenticate="true">

© EBICS SC Page: 56
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<static>
<HostID>EBIXHOST</HostID>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>
<OrderDetails>
<AdminOrderType>HIA</AdminOrderType>
</OrderDetails>
<SecurityMedium>0000</SecurityMedium>
</static>
<mutable/>
</header>
<body>
<DataTransfer>
<!-- XML instan
with ebics ord

<OrderData>

</OrderData>
</DataTransfer>
</body>
</ebicsUnsecuredRequest>

Ord

erData in accordance

Diagram 21: EBICS request for administrative order type HIA

= Transmission of the following data in the HIA response (analogous to INI, see

example Diagram 22):

- Bank-technical return code
(ebicsKeyManagementResponse/body/ReturnCode)

- Order number (ebicsKeyManagementResponse/header/mutable/OrderID)

This number is assigned by the bank server automatically.
- Technical return code

(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text

(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Version="H005" Revision="1">
<header authenticate="true">
<static/>
<mutable>
<OrderID>A101</OrderID>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS_OK] OK</ReportText>
</mutable>
</header>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>

xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt response HO005.xsd"

© EBICS SC

Page: 57
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

| </ebicsKeyManagementResponse>

Diagram 22: EBICS response for administrative order type HIA

4.4.1.3 Initialisation via H3K

If the bank-technical (authorisation) key is based on a self-signed certificate or an
RSA key without certificate, the public keys of the subscriber/user are still sent to the
bank by the administrative order types INI and HIA.

In order to guarantee the authenticity of the subscriber’s (user’s) public keys, it must
be ensured that the bank receives the public bank keys via a second, independent
communication path (initialisation letter for INI and for HIA, respectively). The bank
first compares the keys having received via different communication paths before
approving them.

When using CA-issued certificates the process for H3K is now the following:

1) The certificate for the bank-technical signature (ES) must be issued by a CA.
In this case, a letter is not necessary for the initialisation of this key.
However, the certificates for encryption as well as identification and
authentication can be self-signed certificates as well as certificates issued by a
CA.

2) As to the upload of the public keys for encryption and
authentication, these can be signed by an ES. A letter for the initialisation of
these keys is not necessary.

3) The necessary checks on the bank’s side (before applying the
keys for the first time) are:
a. Does an agreement for the use of the CA-issued certificate exist?
b. Are the administration steps for the customer/user finalised at the
EBICS server and is the user known at the EBICS server?
C. Is the certificate valid?
4) Taking into consideration 1) to 3), a new order type H3K can be
defined:
a. It combines INI and HIA (transport of three public keys, all keys
base on certificates); for the ES key, the certificate must be issued by a
CA.

b. It already contains an ES (via certificate issued by a CA)

This concept requires a high level of authenticity for the certificates used in this H3K
process (which serve as ES keys) and also for the Certification Authority (CA) which
issues these certificates:

» Issuing of the certificate:
o Strong identification requirements for the identification (regarding the
person and the organisation requesting the certificate)
o All data in the certificate have been thoroughly validated by a
registration authorithy.
> Naming rules:

o For the name in the certificate (SubjectName) there must be a fix schema,
which allows a unique (automatic) assignment of the natural person to the
company.

> Cryptographic requirements:

© EBICS SC Page: 58
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

o E.g. length of the keys
> Validation requirements:
o Actuality and availability of revocation list

For the electronic initialisation (without INI letter) of new EBICS users with the
administrative order type H3K the usage of CA-issued certificates is mandatory.
When the certificate is not issued by the bank itself, a necessary prerequisite for the
electronic initialisation is that the new EBICS user has notified his certificate for the ES
including his unique subject name/CA name and the relevant CA root certificate to his
bank. The new EBICS user must use his certificate for the ES to notify the certificates
for authentication and encryption to his bank.

The requirements that have to be fulfilled in the certificate policy are agreed bilaterally
between customer and bank. The interoperability of different trust domains can be
achieved only, if appropriate technical, organisational and legal requirements are
defined. These requirements are not addressed in the EBICS specification as they are
not relevant for the communication standard itself.

In the schema file ebics_orders_H005.xsd, the element group H3KRequestOrderData
contains three certificates. In the schema file ebics_keymgmt_request_HO0O05 the
structure ebics:UnsignedRequest contains H3KRequestOrderData
(compressed/base-64 encoded) and a signature.

In the schema file ebics_ types H005.xsd the type (needed for sending a X509
Certificate) SignatureCertificateInfoType is defined.
AuthenticationCertificateInfoType and EncryptionInfoType are
extensions of this type and each of these types is used in H3KOrderData.

© EBICS SC Page: 59
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

l_ehics:HSI{RequestDl derDataType

—{ ebics:SignatureCertificatelnfo [

Key For electronic Signaturs

—{ ebics:AuthenticationCertificatel...

Authentication key

H3KRequestOrderData [{]—r@a—

Order data For order type H3K
(request: initizlize all three uzer's
kays).

—{ ebics:EncryptionCertificatelnfo [

Encryption key

= ebics:PartnerlD

PartnerICr,

~ebics:UserlD

___________]
___________ |
|
|
EeI:-ic:ﬁa:Sigmatur|:='||'|:=n;iun| |
ES-\Yersion, |
_________ —1

__________ 1

X
L. any #tother &
3 B

rinlalatelplyli oy

= ebics:AuthenticationVersion |

Authentication wersion,

7

0.0e

~ ebics:EncryptionVersion |

Encryption Wetsion,

Diagram 23: Definition of the XML schema element H3KRequestOrderData for H3K

order data

When initialising a user, the check process on the bank’

s side is as follows:

1- Check the structure of H3KRequestOrderData and extract the certificate for
authorisation (ES).

2- Check if this certificate was delivered by a valid Certificate Authority (CA).

3- Check if the signature in SignatureData corresponds to the public ES key in
H3KRequestOrderData.

4- Check if the information in the certificate (ebicsUnsignedRequest = body 2
DataTransfer) matches the previously declared information on the client.
Note: The Bank is free to choose the means and the kind of information necessary for
the match. For example, it can be declared in a contract or by a process of uploading
certificates published on the bank’s web site.

©EBICS SC Page: 60

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

a. If it matches, the server returns EBICS_OK (code 000000). The state of the user
is automatically switched to ‘Ready’. The user doesn’t need to send initialisation
letters (or rather no other process of validation is necessary)

b. If the server is unable to match the certificate (ES key) with the previously
declared information, the server sends a reject response and the H3KRequest is
aborted. The server returns EBICS_CERTIFICATES_VALIDATION_ERROR

(code 091219)
The state of the user remains the same (“New”). The user has two possibilities

to go on:

i. Process a H3K request again with a correct certificate (for the ES) issued
by a CA

ii. Or process INI and HIA for initialisation
(INI/HIA is especially usable as a backup process)

The signing certificate (ES) must be valid (and, above all, not expired). Otherwise the
customer has to update/ declare the new certificate (issued by a CA).

Furthermore, all error codes related to the key management can be returned in the H3K
process.

Note:

A bank can act as a "private” CA for its customers, i.e. it creates keys that meet all the

conditions and properties of a CA certificate and is valid as a CA certificate at this bank.

The following rule applies to this type of certificate:

- At the bank issuing the “private” CA certificate, an EBICS initialisation can take place via
H3K according to the process described above (i.e. INI/HIA and INI letter are not
required)

- If the EBICS user wants to use these keys at another bank, however, these certificates
are not considered CA certificates and therefore a standard initialisation must take place
there via INI/HIA and INI letter.

4.4.2 Download of the financial institution’s public keys

4421 General description

The subscriber downloads all public keys from the financial institution by means of a
specially-provided administrative order type (HPB). Download of the public bank keys
necessitates the subscriber state “Ready”, only then can the processes be established
that the subscriber wishes to implement for the identification and authentication
signature, bank-technical signature and encryption.

Processing of HPB merely requires a single EBICS request / response pair. The EBICS
request of HPB contains the subscriber’s identification and authentication signature
itself, or that belonging to a technical subscriber of the same customer, via the control
data.

© EBICS SC Page: 61
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 24 represents the processing at the bank’s end that takes place on receipt of
an HPB request. The replay test takes place in the same way as with the bank-technical
order types (see Chapter 11.4). Thus HPB returns the technical error
EBICS_TX_MESSAGE_REPLAY when the HPB request is a recovered message. In
the same way, in the case of bank-technical order types, verification of the
customer/subscriber ID, the subscriber state and the identification and authentication
signature takes place within the process step “Verifying authenticity of the EBICS
request” (see Chapter 5.5.1.2.1, Diagram 41).

This can produce the following error codes:

= EBICS AUTHENTICATION_FAILED
This technical error occurs when the subscriber’s (or the technical subscriber’s)
identification and authentication signature could not be verified successfully

= EBICS_USER_UNKNOWN
This technical error occurs when the technical user’s identification and authentication
signature could be successfully verified but the (non-technical) subscriber is unknown to
the financial institution

= EBICS_INVALID_USER_STATE
This technical error occurs when the technical user’s identification and authentication
signature could be successfully verified and the (non-technical) subscriber is known to
the financial institution but does not have the state “Ready”.

After successful processing of the “Message authenticity verification”, the actual
processing of the HPB order does not produce any further specific technical or bank-
technical errors.

© EBICS SC Page: 62
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

0—»[Receiving HPB request]

A 4

RCT=0
RCF=0

A\ 4
Replay Test
[RC # 0] | rer= EBICS_MESSAGE_REPLAY
'L RCF=0
[RC = 0]

Authentication check of the

EBICS request |_|_|

else Y
[RCT = 0 und RCF = 0]

Supply of the requested
HPB order data:
credit institute's public keys

T

HPB response creation

\ 4
Vv

A

@4—[Sending HPB response]

Diagram 24: Processing of an HPB request at the bank’s end

The following applies in the case of the EBICS response:

= it does not contain an identification and authentication signature, since the financial
institution’s public identification and authentication key is being transmitted for the first
time in this response. This financial institution’s public identification and authentication
key cannot be used by the subscriber to verify the identification and authentication
signature since its authenticity has not yet been ascertained.

= it does not contain a bank-technical electronic order data signature, i.e. the public bank
key, since the financial institution’s bank-technical key is being transmitted for the first
time in this response. This public bank-technical key cannot be used by the subscriber
to verify the bank-technical ES since its authenticity has not yet been ascertained.

= it contains the order data, i.e. the public bank key, in encrypted format since the
subscriber’s public encryption key has already been activated by the financial institution.

© EBICS SC Page: 63
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The subscriber has all necessary public bank keys after successful processing of HPB,
although they must verify them before they are used: as shown in Diagram 13 the state
of these keys at the subscriber’s end is set to “New”. When they are set to the state
“‘New”, bank keys may not be used for communication via EBICS since their authenticity
is not ensured.

In order to guarantee the authenticity of the bank keys, the financial institution must
ensure that the subscriber receives the public bank keys and/or the hash-values via a
second, independent, communication channel (e.g. via the financial institution’s
website). The subscriber is responsible for verification of the bank keys. The process for
verification of the bank keys is not a part of this standard. If the bank provides
certificates issued by a CA, the client has to check the validity of the certificates (for
annotation, please refer to the Common Implementation Guide). It is dependent on the
implementation of the EBICS client systems that ensure that subscribers only use the
public keys after they have been successfully verified.

After successful verification, the state of the public bank keys at the subscriber’s end
changes from “New” to “Activated”. This state change is also shown in Diagram 13 Only
those bank keys that have the state “Activated” may be used for communication via
EBICS.

In EBICS Version “HO05” the ES of the financial institutions is only planned (see
Chapter 3.5.2). Diagram 13 takes into account the state of the bank’s public bank-
technical key at the subscriber’s end in preparation for future EBICS versions.

4422 Description of the EBICS messages

44221 Format of the order data

The order data for HPB is an instance document that conforms with
ebics_orders_HO005.xsd and comprises the top-level element
HPBResponseOrderData. HPBResponseOrderData is defined as follows via the
XML schema:

© EBICS SC Page: 64
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

—| ebics:AuthenticationPubKeyinfo

public authentication key,

—| ebicz:EncryptionPubKeyinfo

public ancryption key,

public signature ke,

. = ehic=:HostlD

[response: receive bank's public |
| v Host-ID,

kel

o sather .
- any #other 1

_________________ . = _:_/
0. |

Diagram 25: Definition of the XML schema element HPBRequestOrderData for HPB
order data

In Version “H005” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). The element SignaturePubKeyInfo is defined in
preparation for future versions with maximum frequency (maxOccurs) being equal to O.

The order data is compressed, encrypted and base64-coded, and embedded into the
corresponding HPB response.

4.4.2.2.2 Description and example messages

This chapter describes the EBICS messages for the administrative order type HPB.
HPB requests are instance documents that conform with

ebics_keymgmt_request H005.xsd with the top-level element
ebicsNoPubKeyDigestsRequest. On the other hand, HPB responses are instance
documents that conform with ebics_keymgmt_response_H005.xsd with the top-level
element ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding XML
elements are given in brackets in XPath notation. The following conventions apply:

Data that is fundamentally optional is marked “(optional)”.

Data that may only be missing under certain conditions is instead marked
“(conditional)”

Optional XML elements of the EBICS message that are missing in the description
may not be present in the EBICS message
Optional XML elements in the EBICS messages that appear in the description without
the designation “(optional)” or “(conditional)” must always be placed in accordance
with the description.

© EBICS SC Page: 65

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

This description is supplemented with an example of an EBICS request / response pair
for the administrative order type HPB.

= Transmission of the following data in the HPB request (see example in Diagram 26):

- Host ID of the EBCIS bank computer system
(ebicsNoPubKeyDigestsRequest/header/static/HostId)

- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS
messages (ebicsNoPubKeyDigestsRequest/header/static/Nonce,
ebics/header/static/Timestamp)

- Subscribers (ebicsNoPubKeyDigestsRequest/header/static/PartnerID,
ebics/header/static/UserID) who initiates the HPB request

- (Conditional) technical subscribers
(ebicsNoPubKeyDigestsRequest/header/static/PartnerID,
ebics/header/static/SystemID)

SystemID must be present if the customer system is a multi-user system. The
technical subscriber is responsible for the generation of the EBICS requests
(including the identification and authentication signatures) that belong to orders that
are submitted or bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsNoPubKeyDigestsRequest/header/static/Product)

- Administrative Order type
(ebicsNoPubKeyDigestsRequest/header/static/OrderDetails/AdminO
rderType) setto “HPB”

- Security medium for the subscriber’s bank-technical
key (ebicsNoPubKeyDigestsRequest/header/static/SecurityMedium)
set to “0000".
The security medium for the subscriber’s bank-technical key is set to “0000” since
HPB orders neither require ES’s nor transmit bank-technical subscriber keys.

- Identification and authentication signature of the technical subscriber, if such is
available, otherwise the identification and authentication signature of the subscriber
themselves (ebicsNoPubKeyDigestsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the
EBICS request whose attribute value for Rauthenticate is equal to “true”. The
definition of the XML schema “ebics_keymgmt_request H005.xsd“ guarantees that
the value of the attribute Gauthenticate is equal to “true” for precisely those
elements that must be signed

<?xml version="1.0" encoding="UTF-8"?>

<ebicsNoPubKeyDigestsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt request HO005.xsd"
Version="H005" Revision="1">
<header authenticate="true">

<static>

<HostID>EBIXHOST</HostID>

© EBICS SC Page: 66
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<Nonce>234AB2340FD2C23035764578FF3091FA</Nonce>
<Timestamp>2005-01-30T15:40:45.1232</Timestamp>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>
<OrderDetails>
<AdminOrderType>HPB</AdminOrderType>
</OrderDetails>
<SecurityMedium>0000</SecurityMedium>
</static>
<mutable/>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmldenc#sha256"/>
<ds:DigestValue>..here hash value authentication...</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.here signature value authentication...</ds:Signaturevalue>
</AuthSignature>
<body/>
</ebicsNoPubKeyDigestsRequest>

Diagram 26: EBICS request for administrative order type HPB

= Transmission of the following data in the EBICS response for HPB (see example in
Diagram 27):

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code
(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text
(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Conditional) information for encryption of the order data and possibly the ES of the
order data
(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionIn
fo), if no errors of a technical or bank-technical nature have occurred.

In particular, DataEncryptionInfo also contains the asymmetrically-encrypted
transaction key

(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionIn
fo/TransactionKey)

- (Conditional) the order data
(ebicsKeyManagementResponse/body/DataTransfer/OrderData), if no
errors of a technical or bank-technical nature have occurred

- (Optional) time stamp for the last updating of the bank parameters
(ebicsKeyManagementResponse/body/TimestampBankParameter).

© EBICS SC Page: 67
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.5

45.1

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics keymgmt response HO005.xsd”
Version="H005" Revision="1">

<header authenticate="true">
<static/>
<mutable>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS OK] OK</ReportText>
</mutable>
</header>
<body>
<DataTransfer>
<DataEncryptionInfo authenticate="true">
<EncryptionPubKeyDigest Version="E002"
Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">..here hash value of public key for
encryption ..</EncryptionPubKeyDigest>
<!-- asymmetricly encrypted transaction key -->
<TransactionKey>..</TransactionKey>
</DataEncryptionInfo>

amer

with ebics orc

<OrderData
</OrderData>
</DataTransfer>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsKeyManagementResponse>

Diagram 27: EBICS response for administrative order type HPB

Suspending a subscriber

Alternatives

If there is any suspicion that subscriber keys have been compromised, the subscriber
MUST suspend their access authorisation to all bank systems that use the compromised
keyl/s.

Subscribers that wish to suspend their remote access data transmission to a bank
system can do this in two ways:

= The SPR transaction is a standard upload transaction transmitting the ES file exclusively

containing the signature of the subscriber who is to be suspended with the help of a
dummy file. The dummy file contains one blank character only and is not being
transmitted. The corresponding EBICS request not only has to contain this signature but
also an identification and authentication signature. The identification and authentication
signature may also be provided by a technical subscriber.

The SPR order does not comprise any additional order data and hence does not
contain any order file either.

© EBICS SC Page: 68

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= |n addition, the subscriber has the possibility of instigating the suspension via a second

45.2

4.6

communication channel, e.g. by telephone via a specific contact of the financial
institution. If a subscriber key gets lost or damaged, only this alternative is selectable.

After successful execution of the suspension, the subscriber has the state “Suspended”
and renewed initialisation of the subscriber is required.

Revoking a subscriber via SPR

SPR is a regular upload transaction. See Chapter 5.5 for a detailed description of the
flow of the transaction (including its behaviour in cases of errors). Subsequently, only
differences and supplements are given.

For SPR only an ES file is transmitted.. Processing is already being executed during the
phase of initialisation, i.e. the bank system provides no transaction ID with the
response.

The bank system has to ensure that the SPR request contains the identification and
authentication signature of the subscriber who is to be revoked, or of the technical
subscriber, respectively.

Verification of the customer/subscriber ID, the subscriber state and the identification
and authentication signature takes place within the process step “Verifying authenticity
of the EBICS request” (see Chapter 5.5.1.2.1, Diagram 41).

The ES file has to contain a valid electronic signature of the subscriber who is to be
suspended by way of a file containing one blank character only.

The subsequent actual synchronous suspension of the subscriber does not return any
further specific technical or bank-technical errors.

Key changes

In EBICS V 2.x, there were two options for the public key format of the ES key: a
proprietary format or the xml element group x509, which contains special data related to
the x509 standard. With EBICS V 3.0, the proprietary format has been dropped and
now the element group x509 must always be used. However, for those who haven’t
used certificates in EBICS V 2.x, this does not require a key change when migrating to
EBICS V 3.0: Only if the EU key is not sufficiently long, i.e. less than 2048 bit, a key
change must be carried out.

However, as of EBICS V 3.0, both new initializations as well as key changes must be
carried out with certificates.

© EBICS SC Page: 69

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.6.1

Changing the subscriber keys

With EBICS 2.3 and earlier versions, keys had to be changed by means of the
administrative order types PUB (change of the bank-technical key) and HCA (change of
the identification and authentication key as well as the encryption key). These changes
could be executed independently. In order to simplify the key management at the
customer's as well as the bank's end, with EBICS 2.4 the administrative order type HCS
is introduced allowing all three keys of a single transaction to be modified. Therefore,
order type HCS comprises PUB and HCA.

HCS — as well as PUB and HCA — require the bank-technical ES of the respective
subscriber in the ES version supported in each case (e.g. A005, A006), but not the
additional dispatch of initialisation letters. For reasons of compatibility, the
administrative order types PUB and HCA can still be used as alternatives to HCS.
Depending on their state, the subscriber has two possibilities for updating their public
subscriber keys on the bank system:

= With the state “Suspended”, subscriber initialisation MUST fundamentally be carried out so

that bank-technical orders can be transmitted via EBICS. Hence suspension of access
authorisation followed by subscriber initialisation is an alternative for activation of
subscriber keys. Subscriber initialisation takes place using the administrative order
types INI and HIA, and requires the additional sending of initialisation letters. The
subscriber initialisation process is described in Chapter 4.4.1. Information on the subject
of suspension of a subscriber’s access authorisation can be found in Chapter 4.5.

= When they have the state “Ready”, subscribers can update their public subscriber keys

46.1.1

using the two administrative order types PUB, HCS and HCA without having to go the
long way round with subscriber initialisation. In each case, PUB, HCS and HCA require
the ES of the respective subscriber but not the additional dispatch of initialisation letters.
On the one hand, this simplifies the key change process but on the other hand it
removes the possibility of using initialisation letters to document a subscriber’s key
history. It is the responsibility of the financial institution to document the key change via
PUB, HCS and HCA so that it remains verifiable.

The subject of this chapter is the detailed description of key changing via PUB, HCS
and HCA.

General description

Subscribers with the state “Ready” can update their public subscriber keys by using one
of the following administrative order types:

= PUB: update the public bank-technical key
= HCA: update the public identification and authentication key and the public encryption

key

= HCS: update the public bank-technical subscriber key, the public identification and

authentication key and the public encryption key

PUB, HCS and HCA are regular upload transactions whose sequence (including
behaviour in error situations) is described in detail in Chapter 5.5. Contained therein is
Diagram 46 which describes the sequence of EBICS request handling by the bank
during the data transfer phase of an upload request. A part of this procedure is the

© EBICS SC Page: 70

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

process step “Verifying and processing of the order”. This step returns the following
error codes for the administrative order type PUB:

EBICS _KEYMGMT_UNSUPPORTED VERSION_ SIGNATURE
This business related error occurs when the order data contains an inadmissible version
of the bank-technical signature process

EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE
This business related error occurs when the order data contains a bank-technical key of
inadmissible length

EBICS_INVALID_ORDER_DATA FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.2.5.1)

EBICS USER_UNKNOWN
This technical error occurs when the subscriber that is a component of the PUB order
data is not a registered subscriber

EBICS_UNKNOWN_USER_STATE
This technical error occurs when the subscriber that is a component of the PUB order
data does not have the state “Ready”

EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the subscriber in question could not
be successfully verified.

For Return codes relating to CA-issued certificates, refer to Annex 1

For HCA, the process step “Examination and processing of the order” returns the
following error codes:

EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION
This business related error occurs when the order data contains an inadmissible version
of the encryption process

EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION
This business related error occurs when the order data contains an inadmissible version
of the identification and authentication signature process

EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION
This business related error occurs when the order data contains an encryption key of
inadmissible length

EBICS_ KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION
This business related error occurs when the order data contains an identification and
authentication key of inadmissible length

EBICS_INVALID_ORDER_DATA FORMAT
This business related error occurs when the order data does not correspond with the
designated format (see Chapter 4.4.1.2.5.1)

© EBICS SC Page: 71

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= EBICS_USER_UNKNOWN
This technical error occurs when the subscriber that is a component of the HCA order
data is not a registered subscriber

= EBICS_UNKNOWN_USER_STATE
This technical error occurs when the subscriber that is a component of the HCA order
data does not have the state “Ready”

* EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the subscriber in question could not
be successfully verified.

= For Return codes relating to CA-issued certificates, refer to Annex 1

HCS being a combination of PUB and HCA, all error codes in process step "Verifying
and processing of the order" listed under PUB and HCA can be reported.

Either PUB and HCA or HCS must be submitted by the subscriber whose keys are to be
updated. Each administrative order type PUB, HCS, and HCA require precisely one ES
that must be supplied by the subscriber whose keys are to be updated. The signature
class of this ES is irrelevant.

User system Bank system

User's key pairs currently used with EBICS:
private/public authentication key_old
private/ public encryption key_old
private/ public EU-key_old

User's released public keys for EBICS:
private/public authentication key_old
private/ public encryption key_old
private/ public EU-key_old

User's new key pairs for EBICS:
private/ public EU-key_new User[Ready]

PUB-request (public EU-key_new)

PUB-Response

User's key pairs currently used with EBICS:
private/public authentication key_old
private/ public encryption key_old
private/ public EU-key_new

User's released public keys for EBICS:
private/public authentication key_old
private/ public encryption key_old
private/ public EU-key_new

User[Ready]

Diagram 28: Changing the bank-technical subscriber key via PUB

© EBICS SC Page: 72
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 28 represents the state of the public subscriber keys and the subscriber before
and after processing of PUB. The following applies to the processing of PUB:

= The order data, i.e. the subscriber's new public bank-technical key, is compressed,
encrypted and finally base64-coded, and is embedded into the EBICS messages.

= The order data is signed via ES by the subscriber whose public bank-technical key is to
be updated. The subscriber’s old bank-technical key (that is activated at this point) is
used for this ES.

User system Bank system

User's key pairs currently used with EBICS:

private/public authentication key_old User's released public keys for EBICS:
private/ public encryption key_old private/public authentication key_old
private/ public EU-key_old private/ public encryption key_old

private/ public EU-key_old
User’s new key pairs for EBICS:
private/public authentication key_new User[Ready]
private/ public encryption key_new

HCA-request (public authentication key_new,
public encryption key_new)

HCA-response

User's key pairs currently used with EBICS:

private/public authentication key_new U_ser‘s releqsed puinc_key; for EBICS:
private/ public encryption key new prlv_ate/publlc _authentlcatlon key_new
private/ public EU-key old private/ public encryption key_new

private/ public EU-key_old

User[Ready]

Diagram 29: Changing the authentication key and encryption key via HCA

Diagram 29 shows the state of the subscriber keys and the subscriber before and after
the processing of HCA. In addition, the following applies to the processing of HCA:

= The order data, i.e. the subscriber's new public identification and authentication key and
new public encryption key, is compressed, encrypted and finally base64-coded, and is
embedded into the EBICS messages.

= HCA requests contain the identification and authentication signature of the affected
subscriber or a technical subscriber. The identification and authentication signature of
the affected subscriber is generated with the old identification and authentication
signature (that is activated at this point). The financial institution’s EBICS responses
contain the financial institution’s identification and authentication signature.

By using HCS all keys are changed. The administrative order type HCS can be
regarded as an alternative to PUB and HCA which allow the keys for the bank-technical

© EBICS SC Page: 73
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

electronic signature (PUB) and for the identification and authentication signature and

encryption (HCA) only to be changed separately.
Therefore, the process looks like follows:

User system Bank system

l

User’s key pairs currently used with EBICS:
private/public authentication key_old
private/ public encryption key_old

N N User's released public keys for EBICS:
private/ public EU-key_old private/public authentication key_old
User's new key pairs for EBICS: privatg/ public encryption key_old
private/public authentication key_new private/ public EU-key_old
private/ public encryption key_new User[Ready]
private/ public EU-key.new
HCS-request (public authentication key_new,
public encryption key_new, EU-key_new)
HCS-response
S g S g gy SR g S S |
User’s key pairs currently used with EBICS: . " X
private/public authentication key_new U_sers relegsed publlc_key_s for EBICS:
private/ public encryption key_new prlvgte/publlc ‘aulhentlcz?\tlon key_new
private/ public EU-key new private/ public encryption key_new

private/ public EU-key_new

User[Ready]

Diagram 30: Changing the bank-technical subscriber key, the authentication key, and
encryption key via HCS

46.1.2 Format of the order data

When using the ES in structured form (from signature process A005/A006 on), the order
data for PUB is an instance document that conforms with ebics_signature_S002.xsd and
comprises the top-level element SignaturePubKeyOrderData (in compliance with
INI, XML scheme representation see in chapter 4.4.1.2.5)

SignaturePubKeyOrderData is defined as follows via the XML schema:

© EBICS SC Page: 74
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

| esig:SignaturePubKeyOrderDataType

| —| esig:SignaturePubKeyinfo

| public signature ke,

|

|

|

| |

SignaturePubKeyOrderData E]—L[—“'—:E'— Custorner-I0, I
|

|

|

Elernent For public key file independent | Eesig:Userll]
of arder type ar tranzaction [D
Geschifizvorfall,

v UserID,

Diagram 31: Definition of the XML schema element SignaturePubKeyOrderData for
PUB order data (identical to INI, see own chapter)

The order data for HCA is an instance document that conforms with
ebics_orders_HO005.xsd and comprises the top-level element HCARequestOrderData.
HCARequestOrderData is defined as follows via the XML schema:

| ebics:HCARequestOrderDataType |

—| AuthenticationPubKeyinfo |

pubic suthentication ey, |

—| EncryptionPubkeylnfo

|
|
|
|
HCARequestOrderData E]-|—[—"-—:EI—
|
|
|
|
-

Diagram 32: Definition of the XML schema element HCARequestOrderData for HCA
order data

The order data for HCS is an instance document that conforms with
ebics_orders_H005.xsd and comprises the top-level element HCSRequestOrderData.
HCSRequestOrderData is defined as follows via the XML schema:

© EBICS SC Page: 75
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.6.2

—| ehics:AuthenticationPubKeyinfo

public authentication ke,

public encryption ke,

—L‘ esig:SignaturePubKeyinfo

|
|
|
|
|
|
HCSRequestOrderData [Tj—r(-—-jg— public signature key. I
|
|
|
|
|

|
|
I —| ebics:EncryptionPubKeyinfo
|
|

Order data For arder bype HCS _|Ee|;..i.¢ =:PartnerlD

(request: replace all keys).
Custarner-IC,

User-I0r,

:. _.z e
-Hany #iother 1
~ I

T T
P

| = ehics:UserlD
.

Diagram 33: Definition of the XML schema element HCSRequestOrderData for HCS
order data

The order data for PUB, HCS, and HCA are compressed, encrypted and base64-coded,
and embedded into the corresponding EBICS request.

Changing the bank keys

The process for updating bank keys is not a part of this standard, but at the end of this
chapter there is a description for the automatic update of bank keys. The duration of
validity of the bank keys is not part of the EBICS interface. From the point of view of the
EBICS protocol, one set of currently-valid bank keys exist at any time and for any
admissible combination of processes for the identification and authentication signature,
encryption and the ES. In Version HO05, this consists of precisely the following keys:

= Private/public encryption key for process E002

= Private/public identification and authentication key for process X002

= Private/public bank-technical key for process A005 or A006.

In EBICS there are no transition periods where more than one key is valid for the same
process. Keys changed at the bank’s end are immediately valid in EBICS.

If the bank provides new keys the subscriber is responsible for download of the
respective current bank keys via HPB. HPB always delivers the current keys (key for

© EBICS SC Page: 76

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

identification and authentication as well as key for encryption) and these are signed by
the identification and authentication signature of the bank side. However for this
signature the former key for identification and authentication is used. For this procedure
“signature value” in the x.509 structure contains the identification and authentication
signature (built up with the former current bank key) and the 1 to n occurences of
“public key” contain the current public keys.

When processing of HPB for the first time (initialisation of the subscriber) the verification
of this signature is not possible as the subscriber doesn’t hold former keys to verify the
signature. The state of the bank keys at the subscriber's end is equal to “New” in this
moment. The bank keys may not (yet) be used for communication via EBICS while they
have this state. The financial institution MUST make the new keys accessible by means
of a second, independent, communication channel. As with initial download of the bank
keys, the subscriber MUST carry out a comparison of the keys and/or its hash-values
received via the different communication channels immediately after initialisation. After
successful verification of the bank keys, their state is “activated” at the subscriber’s
side. When they have the state “activated”, the bank keys can be used for
communication via EBICS.”

When reprocessing HPB (further time for the subscriber due to the update of bank keys)
the identification and authentication signature can be verified as the subscriber’s end
holds the former keys.

Case 1:

When the verification is successful the state of the bank keys remains “activated”. The
bank keys will be exchanged in the client system.

Case 2:

When the verification is not successful the subscriber is informed about this failure and
the state of the bank keys is reset to “new”. As in the initialisation case he MUST carry
out a comparison of the keys and/or its hash-values received via the different
communication channels.

In order to ensure that the subscriber has the current bank keys, the sequence of an
EBICS transaction (with the exception of INI, HIA, HPB) in the first EBICS request
provides for the transmission of the hash value of the financial institution’s public keys
(XML structure ebicsRequest/header/static/BankPubKeyDigests) with which
the subscriber has been provided. The bank system verifies whether the these keys are
up-to-date and returns the result of the verification to the subscriber. If one of these is
no longer current, the transaction is terminated with the technical return code

EBICS BANK PUBKEY_ UPDATE_REQUIRED. The subscriber must then download
the bank keys with HPB.

In Version “H005” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). In preparation for future versions of EBICS, the XML
structure BankPubKeyDigests contains the hash value of the public bank-technical
key with the maximum frequency being equal to 0. Further details on verifying the hash
value can be found in Chapter 5.5.1.2.

© EBICS SC Page: 77
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Standard Approach for the automatic update of bank keys:

The first bank key (for authentication and encryprion as well) is a self-signed certificate
(22).

All subsequent, new keys (Z2 — Zn) are normally generated as certificates which are
signed (subscribed) by the preceeding certificate (Z2 - signed by Z1, Z3 by Z2, Zn by
Zn-1).

The data digest of HPB relates to the current certificate.

The bank server delivers (via HPB) no certificate chains but only the current certificate,
signed by the preceding one.

It is a basic rule that the bank decides if the current certificate will be signed with the
preceeding key. If the current certificate isn‘t signed by the bank, the (manual) release
procedure for the key will be necessary (as before).

For the clients there is no change for the first download: The data digest of the
certificate has to be checked by the well-known manual procedure.

There is no difference between self-signed and CA certificates.

If the bank signs the certificate in the 2" ... n™" download, the client can try to validate
the signature of the current certificate with the key of the preceeding certificate. In the
case of failure he has to use the manual procedure. In the case of success he can use
the key directly and the preceeding one expires.

4.7 Change-over to longer key lengths

The key lengths must continually be increased to guarantee the security of the RSA
process. See the regular publications of the “Ubersicht (iber geeignete Algorithmen”
from the Regulierungsbehdérde fir Telekommunikation und Post.

The subject of this chapter is the transition to keys of greater length in EBICS.

In version “H005” Bank-technical keys of a minimum length of 2048 are to be used.

In Version “H005”, EBICS sets a minimum length of 2048 bits (= 2 Kbit) and a maximum
length of 16 Kbit for identification and authentication keys and encryption keys. The
minimum length must be changed when keys of this length are no longer to be used for
security reasons. The maximum length must be changed when keys that are longer
than this maximum length are allowed to be supported.

The order data formats of the administrative order types HIA, HPB, HCA, and HCS
permit key lengths of any size. This means that these order data formats will not require
adaptation after the key lengths have been increased.

New public identification and authentication keys or encryption keys of greater length
will be transmitted to the bank systems via HIA, HCS, or HCA in exactly the same way
as new identification and authentication keys of consistent length.

In the same way, the financial institution’s new public keys will be downloaded via HPB
irrespective of whether the length of the financial institution’s identification and
authentication key or encryption key has changed.

© EBICS SC Page: 78

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

4.8 Summary

The following table summarises the most important features of the (administrative) key
management order types:

Admi Order data format Identification and Order

n. authentication data ES

Order signature

type subscriber /

financial
institution

INI file (in accordance with

INI Chapter 14) no/no no
ebics:

HIA HIARequestOrder» no/no no
Data
ebics:

HPB HPBRequestOrder» yes/no no
Data

PUB see INI yeslyes yes
ebics:

HCA HCARequestOrder» yeslyes yes
Data
ebics:

HCS HCSRequestOrder» yeslyes yes
Data
ebics: yes

H3K H3KRequestOrder» no/no (certificat
Data e)
Sole key management order

SPR which o)rllly contains an ES yeslyes yes

© EBICS SC Page: 79

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

5 EBICS transactions

5.1

5.1.1

5.1.2

5.1.3

5131

The descriptions and stipulations in this chapter apply to all business transactions (s
identified by BTF) and all administrative orders with the exception of the following
administrative key management orders : INI, HIA, HPB, PUB, SPR, HCA, H3K and
HCS.

General provisions

EBICS transactions

EBICS transactions serve for the transmission of orders to the bank-technical target
system. Corresponding to the subdivision of orders into transmit and download orders,
EBICS differentiates between upload and download transactions: Upload transactions
transmit bank-technical order data and/or bank-technical signatures to the bank-
technical target system; conversely, with a download transaction bank-technical order
data and/or bank-technical signatures are downloaded from the bank-technical target
system.

Transaction phases and transaction steps

Each EBICS transaction passes through different transaction phases. The phases of an
upload transaction are initialisation and data transfer, the phases of a download
transaction are initialisation, data transfer and finally acknowledgement. A transaction
phase can comprise one or more connected transaction steps, wherein a transaction
step is deemed to denote a pair comprising an EBICS request and an associated
EBICS response. In this way, initialisation comprises the first initialisation step, but on
the other hand data transfer can extend over several transaction steps, in each of which
one order data segment is transmitted.

EBICS transactions can comprise one single transaction step, for example when they
just transmit the bank-technical electronic signature for an order.

Processing of orders

Chronological dependencies between transmission and processing of upload
orders

EBICS supports the chronological decoupling of the submission of bank-technical
upload orders via EBICS from their actual processing on the back-end systems of the
financial institution. The ES’s and order data segments that are submitted within an
EBICS transaction are firstly pre-processed. This pre-processing is not a component
of EBICS, it is dependent on the implementation of the bank system, for example the
intermediate storage of the order data segments is a part thereof. After transmission of
the last order data segment the entire order data, order parameters and ES’s are firstly

© EBICS SC Page: 80

Status: Final V 3.0.2

EB

ICS specification

EBICS detailed concept, Version 3.0.2

5.1.3.

5.1.4

passed on to a component of the bank system that is responsible for the management
of pending orders. Realisation is dependent on the implementation of the bank
system, it is not a component of EBICS.

In contrast to the bank-technical upload orders, it is required that processing of the
upload orders of administrative order types MUST be completed before transmission of
the last EBICS response of the upload transaction. In addition to the (administrative)
key management order types, this requirement also applies to download orders of EDS
order types so that the distributed ES process can be handled as efficiently as possible
and the involved subscribers can be given the must up-to-date state of the distributed
ES’s of an order.

2 Chronological dependencies between transmission and processing of
download orders
The download data is a component of the financial institution’s EBICS response. The
bank system makes a further order data segment available with each EBICS
transaction step. In order to accelerate the download process, the download data can
be generated by the bank system in advance (such as e.g. in the case of account
statements) or can not be generated until required.

Transaction administration

Control of the development of an EBICS transaction is normally incumbent on the
customer system, the individual transaction steps of an EBICS transaction are each
initiated by the customer system. In special cases, the bank system can also control the
development of a transaction, e.g. in that it informs the customer system of a possible
recovery point in the event of a recovery.

The EBICS transactions must also be administrated in the bank system to allow the
following:

Assignment of the individual transaction steps to a specific EBICS transaction.

recording of the process of the EBICS transaction for administration of the transaction
states with the objective of ensuring the progress of the EBICS transaction.

Recovery of an EBICS transaction.

This produces the following responsibilities for the bank system’s EBICS transaction
administration:

Generation of EBICS transactions during transaction initialisation. See Chapter 5.2 for
details.

Aborting EBICS transactions if continuation is not expedient or not possible due to the
occurrence of error situations

Termination of EBICS transactions if it has been possible to carry out all transaction
steps successfully

© EBICS SC Page: 81

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= Verifying the process of EBICS transactions to ensure their sequence in accordance with
Chapter 5.5.1.

= Supporting the process for recovering EBICS transactions in accordance with Chapter
5.5.2 and 5.6.2 if the bank system supports recovery.

5.2 Assignment of EBICS request to EBICS transaction

The first phase of every EBICS transaction is the initialisation phase. It is triggered by the
first EBICS request of the transaction, and comprises:

= Verifications, wherein the successful execution of these verifications is a necessary
prerequisite for acceptance of the order by the financial institution

= Further processing steps that are necessary for acceptance of EBICS transactions that
comprise more than one transaction step into the transaction administration system

Examples of such verifications are checks on the state and the BTF identifiers
authorisation of the subscriber that has submitted the order. The precise scope of these
verifications/process steps is described in Chapter 5.5.1.2.1 for upload transactions and in
Chapter 5.6.1.2.1 for download transactions .

If all necessary verifications have been successfully carried out and if the transaction
comprises several transaction steps, the bank system’s transaction administration
generates an EBICS transaction with a transaction ID that is unambiguous within the bank
system (details on generation of the transaction ID can be found in the Appendix (Chapter
11.6). The subscriber is notified of this via the financial institution’s reply message. The
bank system’s transaction administration permanently assigns this transaction the following
data, which is a component of the header data of the EBICS request:

= Customer ID, subscriber ID/technical subscriber ID
= Administrative Order type

= Order parameters (depend on kind of transaction which can be administrative order or a
business-related order, see 3.11)

= Order number (only allowed for administrative order types HVE and HVS)

The order number is only present if a file is transmitted to the bank relating to an order with
already existing order number (this is only valid for the transmission of an ES file with with
the administrative order types HVE or HVS) for matching files with the same order number.
Basically the order number is a component of the header data of the EBICS response (in
uploads). It is assigned by the bank server automatically.

This data is permanently assigned to the transaction and cannot be changed in the course
of the transaction.

Outside of the initialisation process, EBICS requests contain these transaction IDs for
assignment to suitable EBICS transactions. As a whole, they contain the following elements
that identify the transaction step:

© EBICS SC Page: 82
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= Transaction ID that is unambiguous throughout the bank system
= Transaction phase (initialisation, data transfer, acknowledgement) within the transaction

= Serial number of the data segment of bank-technical data, if in the data transfer
transaction phase.

A detailed description of the structure of EBICS requests for upload and download
transactions can be found in Chapters 5.5.1.1 and 5.6.1.1.

5.3 Preliminary verification of orders [optional]

The bank system CAN optionally support preliminary verification functionality to avoid the
possibility of subscribers transmitting large quantities of data to the bank system, wherein it
is only discovered by the bank after the transmission has taken place that the signatory of
the upload order did not have the necessary authorisation. The information as to whether a
bank system supports preliminary verification is contained in its retrievable bank
parameters (see Chapter 12.2). If preliminary verification of upload orders is supported,
determination of the scope of the preliminary verification is the responsibility of the
individual financial institution. Support of one or more of the following verifications is
possible:

= Account authorisation verification

The account authorisation verification ensures that the following condition is complied with
for each signatory:

The signatory is authorised to provide an ES of at least type “B” for orders of the specified
BTF identifiers for each of the order party accounts in a given order.

" Limit verification
The limit verification ensures that the following condition is complied with for each signatory:
The signatory is authorised to provide an ES of at least type “B” for orders of the specified

BTF identifiers and to the respective amount for each of the order party accounts in a
given order.

" ES verification
The ES verification verifies the ES of the signatory of the order and checks in each case as
to whether the ES’s originate from different subscribers.

For a successful preliminary verification the subscriber requires one of the signature
classes "E", "A", or "B". If orders are submitted only (i.e. signature class "T") the preliminary
verification is not run through. The return code "EBICS SIGNATURE VERIFICATION
FAILED" is returned if signature is not valid.

If the order at hand has already been signed the return code "EBICS DUPLICATE
SIGNATURE" is returned.

Preliminary verification of an upload order is a part of the first transaction step within the
framework of the corresponding upload transaction. The results of the preliminary

© EBICS SC Page: 83
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

verification are given in the bank-technical return code in the corresponding EBICS
response of the first transaction step. Preliminary verification takes place before
transmission of the order’s order data, based on information from the customer system
about the order data that is still outstanding. It does not replace the corresponding
verifications that are based on the actual order data after its transmission to the bank
system.

The customer system CAN further limit the scope of the preliminary verifications. The
account authorisation, limit or bank-technical ES preliminary verifications are only carried
out by the bank if the data necessary for their execution is made available by the customer
system. The preliminary verification data is transmitted in the first EBICS request of an
upload transaction via the (optional) element ebicsRequest/body/PrevValidation
(see ebics_request_H005.xsd. The type is called PrevalidationRequestType (see
ebics_types_HO005.xsd) and comprises a list of the following optional elements:

DataDigest

This element contains the hash value of the order data that has been signed by the order
signatories via transport signature or bank-technical ES. During preliminary verification of
an order, the ES’s are verified solely on the basis of this hash value, the correctness of
which cannot be verified at the time of verification.

For the signature process used by the order signatories (and, relating to EBICS, supported
by the bank) a hash value can be set which is to be calculated by the hash function of the
respective signature process. The appropriate signature process is identified by means of
the attribute SignaturevVersion. DataDigest may occur multiple times if the
signatories use different signature versions (this is the case if not every subscriber of a
customer signs using the same signature process). This is the reason why the correct
setting of the attribute SignaturevVersion is so important for each DataDigest.

AccountAuthorisation
This element contains an order party account for the given order. For this account, the
account number (AccountAuthorisation/AccountNumber) is given in German and/or
international format and the bank code (AccountAuthorisation/BankCode) is given in
German and/or international format. As an option, the account holder
(AccountAuthorisation/AccountHolder) can also be provided. This account
information is required by the account authorisation and limit verifications. In addition, the
limit verification requires specification of the total for the individual orders relating to the
given order party account. This amount is contained in the (optional) element
AccountAuthorisation/Amount. The currency of the amount is the value of optional
attribute AccountAuthorisation/Amount@Currency, if this is available. Otherwise the
currency is the value of attribute AccountAuthorisation@Currency, which contains
the currency of the account.

The individual preliminary verifications require the subscriber ID/ customer ID of each
individual signatory. These are a component of the XML type OrderSignature that is used to
represent individual ES’s. See Chapter 3.5 for further details on embedding ES’s into
EBICS messages.

© EBICS SC Page: 84
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

5.4 Recovery of transactions [optional]

This chapter describes the basic principles of the recovery procedure that apply to both
upload and download transactions.

The EBICS recovery mechanism means that a transaction’s order data that has already
been received by the customer or bank system does not have to be re-transmitted if one of
the following error situations occurs:

. Transport error

= Processing error in the EBICS message that contains the order data:
In the case of upload transactions these are EBICS request processing errors that can
occur at the bank’s end, in the case of download transactions they are EBICS response
processing errors that occur at the customer’s / subscriber's end. For example, errors can
occur during (intermediate) storage of order data.
Recovery is an important aspect of the protocol, since the size of the order data can
certainly reach a magnitude of several hundred megabytes.

The mechanism requires knowledge of the transaction ID of the EBICS transaction in
guestion, and is based on the definition of transaction recovery points:

= In the case of upload transactions, the recovery point is the last transaction step in the
transaction whose EBICS request has been successfully received by the bank system and
whose EBICS response has been successfully transmitted. The recovery point is
determined by the state of the transaction in the bank system.

. In the case of download transactions, there may be several recovery points. These are all
of the previous transaction steps in the transaction in question whose EBICS request has
been successfully received by the bank system and whose EBICS response has been
successfully transmitted.

After transport or processing errors have occurred, a recovery point can be used to
continue transactions from the transaction step that follows this recovery point in the
transaction step sequence.

All EBICS requests relating to an open transaction that do not match the state of this
transaction are evaluated by the bank system’s EBICS transaction administration as
recovery attempts.

In order to guarantee progress of the EBICS transactions, the number of possible recovery
attempts per transaction MUST be limited by a maximum value. The bank system’s
transaction administration is responsible for administration of the corresponding counter for
each transaction. Transactions whose counter exceeds the permitted limit will be
terminated by the bank system’s transaction administration. In addition, the bank system

© EBICS SC Page: 85
Status: Final V 3.0.2

5.5

551

EBICS specification
EBICS detailed concept, Version 3.0.2

CAN limit the number of open transactions with a positive recovery counter for each
subscriber by setting a maximum value. The counter for recovery attempts that have
already been initiated for each transaction and/or the counter for the pending transactions
in recovery mode for each subscriber and also the permitted maximum numbers are not a
part of the EBICS messages. Instead, they are a part of the processing of the EBICS
transaction administration at the bank’s end.

Analogously, the customer system’s transaction control limits the number of attempts made
to successfully carry out a particular transaction step in an EBICS transaction. In this case,
counters and permitted maximum numbers are not part of the EBICS messages but are
merely part of the processing of transaction control at the customer’s end.

Details on recovery of upload and download transactions are given in Chapters 5.5.2 and
5.6.2.

Upload transactions

Sequence of upload transactions

The sequence of an upload transaction is shown in Diagram 34 by means of a flow
diagram. Transmission of the order data segments takes place within a loop that is broken
off when the last order data segment has been transmitted (note partial expression “[last
data segment has been transmitted]” from the termination conditions). The sequence
clarifies that order data does not necessarily also have to be transmitted within an upload
transaction note partial expression “[AdminOrderType = HVE or HVS]’ from the termination
conditions). This is the case when only a bank-technical ES relating to an existing order is
transmitted via HVE (add ES) or HVS (cancellation of order) .

© EBICS SC Page: 86
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Customer system Bank system

transaction initialisation

ok, unique transaction ID = xxx

loop)(AdminOrderTyDe = HVE or HVS) or (last data segment has been transmitted)]
I ——

transfer of data segment for transaction xxx

A\ 4

Diagram 34: Error-free sequence of an upload transaction

5511 Description of the EBICS messages

For clarification purposes, the following description of the transaction steps in a business
transaction format (BTF-)upload use example messages for the processing of the service
“sct” (SEPA credit transfer) . It refers to elements of these example messages, using XPath
notation.

The following chapters describe the messages in the individual transaction phases. The
data that is a component of these messages is listed here. Data that is fundamentally
optional is marked “(optional)”. Data that may only be missing under certain conditions is
instead marked “(conditional)’. Optional XML elements that are missing in the description of
an EBICS message relating to a specific transaction phase may not be present in this
EBICS message. Optional XML elements that are present in the description of an EBICS
message relating to a specific transaction phase MUST always be placed correspondingly in
this EBICS message.

EBICS requests for upload transactions are (XML) instance documents that conform to
ebics_request H005.xsd and comprise the top-level element ebicsRequest which is
declared in ebics_request_H005.xsd. EBICS responses for upload transactions are
instance documents that conform to ebics_response H005.xsd and comprise the top-level
element ebicsResponse which is again declared in ebics_response_H005.xsd.

55.1.1.1 EBICS messages in transaction initialisation
= Transmission of the following data in the EBICS request (see Diagram 35):

© EBICS SC Page: 87
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the
setting “Initialisation”
- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS
messages (ebicsRequest/header/static/Nonce,
ebicsRequest/header/static/Timestamp)

- Number of data segments to be transmitted
(ebicsRequest/header/static/NumSegments)

- Subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/UserID) thatis submitting a new order or that is
providing bank-technical ES’s for an existing order.

- (Conditional) technical subscribers (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/SystemID)
SystemID must be present if the customer system is a multi-user system. The technical
subscriber is responsible for the generation of the EBICS request (including the
identification and authentication signatures) that belong to orders that are submitted or
bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsRequest/header/static/Product)

- Administrative Order type
(ebicsRequest/header/static/OrderDetails/AdminOrderType)

- (Conditional) Order number
(ebicsRequest/header/static/OrderDetails/OrderID)

OrderlID is only present if a file is transmitted to the bank relating to an order with an
already existing order number (only allowed for AdminOrderType = HVE or HVS)

- Order parameters (ebicsRequest/header/static/OrderDetails/OrderParams);
the characteristics of the order parameters are dependent on the administrative order
type (see also Chapter 3.11). For the upload of business transaction formats the order
parameters and usage rules are specified in detail in chapter 5.5.1.1.3

- Hash values of the financial institution’s public keys that are available to the subscriber
(ebicsRequest/header/static/BankPubKeyDigests/Authentication,
ebicsRequest/header/static/BankPubKeyDigests/Encryption,
ebicsRequest/header/static/BankPubKeyDigests/Signature).

Both the utilised hash algorithm and the version of the corresponding identification and
authentication, encryption and signature process will be specified for each of these hash
values.

The SHA-256 hash values of the financial institution's certificates X002 and E002 are
composed by calculating the SHA-256 hash value of the certificate in DER binary
format. In Version “H005” of the EBICS protocol the ES of the financial institutions is
only planned (see Chapter 3.5.2). The element BankPubKeyDigests/Signature is
already contained in this description in preparation for future versions of EBICS, but in
Version “H0O05” its maximum frequency (maxOccurs) is set to 0.

© EBICS SC Page: 88
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- Security medium for the subscriber’s bank-technical
key(ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is available,
otherwise the identification and authentication signature of the subscriber themselves
(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of
the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

- (Optional) data for preliminary verification of the order
(ebicsRequest/body/PrevValidation)

- Information for encryption of the ES’s and order data
(ebicsRequest/body/DataTransfer/DataEncryptionInfo) which especially
also contains the asymmetrically-encrypted transaction key
(ebicsRequest/body/DataTransfer/DataEncryptionInfo/TransactionKey)

- ES’s of the order’s order data (ebicsRequest/body/DataTransfer/SignatureData)
SignatureData contains an instance document that conforms to
“ebics_orders_H005.xsd” and contains UserSignatureData as a top-level element. This
instance document has been compressed with ZIP, encrypted for the financial institution
and finally base64-coded before being embedded into the EBICS request (see Appendix
(Chapter 11.2.2)). Diagram 36 contains an example of such an instance document that
contains a single ES. The setting for the attribute PartnerID in the document
UserSignatureData must be identical to the submitter's customer ID in the element
ebicsRequest/header/static/PartnerID.

- The data digest of the order data
(ebicsRequest/body/DataTransfer/DataDigest)
The attribute ebicsRequest/body/DataTransfer/DataDigest
@SignatureVersion specifies the Version of the signature process used for
computation of the data digest.

- Additional order information (optional)
(ebicsRequest/body/DataTransfer/AdditionalOrderInfo)

<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<Nonce>BDA2312973890654FAC9879A89794E65</Nonce>
<Timestamp>2005-01-30T15:30:45.12372</Timestamp>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>

© EBICS SC Page: 89
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<Product Language="en" InstituteID="Institute ID">Product Identifier</Product>
<OrderDetails>
<AdminOrderType>BTU</AdminOrderType>
<BTUOrderParams>

<Service>
<ServiceName>SCT</ServiceName>

<MsgName>pain.001</MsgName>
</Service>
</BTUOrderParams/> </OrderDetails>
<BankPubKeyDigests>
<Authentication Version="X002"

Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTvV2n/tCp+3UIQQ=</Authentica
tion>

<Encryption Version="E002"

Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">21wiueWOIER823jS0i0Ok]jl+woeI=</Encryption
>

</BankPubKeyDigests>
<SecurityMedium>0000</SecurityMedium>
<NumSegments>2</NumSegments>
</static>
<mutable>
<TransactionPhase>Initialisation</TransactionPhase>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-morefrsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>..here hash value authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.here signature value authentication..</ds:SignaturevValue>
</AuthSignature>
<body>
<PreValidation authenticate="true">
<DataDigest SignatureVersion="A006">
MTIzNDU2Nzg5MDEyMzQ1N3c40TAxMIMONTY30DkwMTI=</DataDigest>
</PrevValidation>
<DataTransfer>
<DataEncryptionInfo authenticate="true">
<EncryptionPubKeyDigest Version="E002"

Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">..here hash value of the public bank key
for encryption..</EncryptionPubKeyDigest>

<TransactionKey>EIGI4En6KEBG6ArEzw+ig4Nlwmb6EptcyxXxStA..</TransactionKey>
<HostID>EBIXHOST</HostID>
</DataEncryptionInfo>
<SignatureData authenticate="true">n6KEB6ArEzw+ig4Nlwm6EptcyxXxStAO..</SignatureData>
<DataDigest SignatureVersion="A006">

MTIzNDU2Nzg5MDEyMzQ1Njc40TAXMIMONTY30DkwMTI=</DataDigest>
</DataTransfer>

</body>
</ebicsRequest>

Diagram 35: EBICS request for transaction initialisation for a business transaction format
upload

© EBICS SC Page: 90
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<?xml version="1.0" encoding="UTF-8"?>
<UserSignatureData
xmlns="http://www.ebics.org/S002"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ebics.org/S002
http://www.ebics.org/S002/ebics signature S002.xsd">
<UserSignatureData>
<OrderSignatureData>
<SignatureVersion>A005</SignatureVersion>
<SignatureValue>EUXkQa....</SignaturevValue>
<PartnerID>PARTNER1</PartnerID>
<UserID>Userl</UserID>
</OrderSignatureData>
</UserSignatureData>

Diagram 36: XML document that contains the ES’s of the signatory of the upload order

Transmission of the following data in the EBICS response (see also example in
Diagram 37)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Order number (ebicsResponse/header/mutable/OrderId)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)
- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system
(ebicsResponse/header/static/TransactionID), if the following conditions are
met:

e No errors of a technical or bank-technical nature have occurred during transaction

initialisation

e Within the current transaction, order data segments are transmitted in further
subsequent transaction steps, i.e. the AdminOrderType is hot HVE or HVS.

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with the
setting “Initialisation”

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for @Gauthenticate is equal to “true”. The definition of
the XML schema “ebics_response HO005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that must be signed

- (Optional) time stamp for the last updating of the bank parameters

(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_response H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
</static>

© EBICS SC Page: 91
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<mutable>
<TransactionPhase>Initialisation</TransactionPhase>

<0rderId>0OR01</OrderId>
<ReturnCode>000000</ReturnCode>

<ReportText>[EBICS_OK] OK</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-morefrsa-sha256"/>
<ds:Reference URI="#xpointer (//* [@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>..here hash value authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.here signature value authentication..</ds:Signaturevalue>
</AuthSignature>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 37: EBICS response for transaction initialisation for the upload order

55.1.1.2 EBICS messages in the phase data transfer of a order data segment
= Transmission of the following data in the EBICS request (see example in Diagram 38):

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)
Data for identification of the current transaction step:
e Transaction ID (ebicsRequest/header/static/TransactionlID)

e Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with
the setting “Transfer”

e Serial number of the order data segment
(ebicsRequest/header/mutable/SegmentNumber)
The attribute ebicsRequest/header/mutable/SegmentNumber@lastSegment
specifies whether this is the last data segment.

- Identification and authentication signature of the technical subscriber, if such has been
defined for the current transaction, otherwise the identification and authentication
signature of the submitting subscriber themselves (ebicsRequest/AuthSignature)
The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of
the XML schema “ebics_request_HO005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed

- The actual order data segment (ebicsRequest/body/DataTransfer/OrderData)

(see Chapter 3.3 and Chapter 7 for details on the segmentation of order data).

© EBICS SC Page: 92
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics request H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
</static>
<mutable>
<TransactionPhase>Transfer</TransactionPhase>
<SegmentNumber lastSegment="true">4</SegmentNumber>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//* [Qauthenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256" />
<ds:DigestValue>..here hash value authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.here signature value authentication..</ds:Signaturevalue>
</AuthSignature>
<body>
<DataTransfer>
<OrderData>RUJJIQIMtUMVxdWVzdCBm/HIgZG11INx12XJ0..</OrderData>
</DataTransfer>
</body>
</ebicsRequest>

Diagram 38: EBICS request for transmission of the last order data segment of a business
transaction format order

= Transmission of the following data in the EBICS response (see also example in Diagram
39)

Bank-technical return code (ebicsResponse/body/ReturnCode)

Order number (ebicsResponse/header/mutable/OrderId)

Technical return code (ebicsResponse/header/mutable/ReturnCode)
Technical report text (ebicsResponse/header/mutable/ReportText)

Data for identification of a transaction step:

If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this transaction
step identifies the recovery point of the upload transaction. However, if neither technical nor
specialist errors have occurred in this example, this transaction step reflects the current
transaction step.

- Transaction ID (ebicsResponse/header/static/TransactionID)

© EBICS SC Page: 93
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- (Conditional) Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber), if the value of
TransactionPhase is not equal to “Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment
specifies whether this is the last data segment.

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for Qauthenticate is equal to “true”. The definition of
the XML schema “ebics_response H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

<?xml version="1.0" encoding="UTF-8"?2>

<ebicsResponse

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics response H005.xsd"
Version="HO005" Revision="1">

<header authenticate="true">
<static>
<TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>
</static>
<mutable>
<TransactionPhase>Transfer</TransactionPhase>
<SegmentNumber lastSegment="true">4</SegmentNumber>
<OrderId>OR01</OrderId>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS OK] OK</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>..here hash value authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>..here signature value authentication..</ds:SignaturevValue>
</AuthSignature>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 39: EBICS response for transmission of the last order data segment for a business
transaction form order

© EBICS SC Page: 94
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

55.1.1.3 Upload Request Structure for Business Transaction Formats (BTF)

The following general rules define the interdependency of the BTF elements:

1) For the element <ServiceName> all usable codes are defined by the EBICS SC
(external code list). They have by default a global meaning. An example for globally
accepted services are e.g. SEPA services.

2) Services without a globally accepted implementation guide need to use <Scope>.

3) A global service with some additional specific (market or bilateral) modifications (e.g.
namespace, specific assignments) need to apply an appropriate scope to identify
this fact.

4)Usable scope codes are also specified in an external code list.

5)For the element <ServiceOption> the following structure is binding:

a)3 characters: Global codes (External code list)

b)4 characters: Codes defined by a market (External code lists).

The market can be identified by <Scope>-element.

¢)5 to 10 characters: Codes defined bilaterally between a single bank and its customer
(publication not mandatory)

d)All ServiceOption code lists (global, market, (bilateral)) must include the applicable
ServiceNames for each of the defined codes

e)The use of 4-10 character service options requires a scope element.

This means that only <ServiceName> without a <ServiceOption> or together with 3-

character (i.e. globally agreed) ServiceOption code can be globally agreed business
transactions.

To put it in a nutshell: <Scope> refers to the mandatory elements <ServiceName> and
<MsgName> and — if present — to <ServiceOption>. This description is also valid for
download orders, dateils see chapter 5.6.1.1.4).

The values of the order parameters are positioned in
ebicsRequest/header/static/OrderDetails

of the type BTUOrderParams which is usable in the upload direction and with order type
“BTU”:

© EBICS SC Page: 95
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ebics:SignatureFlagType

' : = attributes |

;c;m_%r;s%e _____________________ _i
} m_ |
Ink : |
\ |
j e i
| | T | 1
} | |
| | [
| ' N
| ' N
| ' N
| | _ |
| | sz |
\ N
| ' K
| ! K
| ! K
| ! K
| ! K
* | |
| bics:ServiceOption ‘ |
e N
' N

r) == N

| ebics:ContainerfFlagType ‘ |

| {7

' N

| N

| |

| |

' N

' N

' N

' N

' N

! N

| |

| |

' N

I N

= |
' N

' N

\-_ - ___ _ y

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Diagram 40: BTF structure for upload (using restricted service type)

© EBICS SC Page: 96
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

XML element/ Data type # Meaning Example
attribute
BTUOrderParams ebics:BTUParamsT 1 Required to qualify an - (complex)
ype upload business
(complex) transaction and the
used/corresponding format
BTUOrderParams ebics:FileNameStri 0..1 | Original file name of the file
@FileNm ngType (simple) - on the client system
restriction base:
minLength
value="1"
maxLength
value="256"
Service RestrictedServic 1 Indicates the target system - (complex)
eType (complex) (nature)/process to handle
the Transaction/File
ServiceName ebics: 1 Name of the service ServiceName
ServiceNameStrin is subject to an
gType (simple) - external code
restriction base: list
minLength (maintained by
value="3" EBICS) -
maxLength Example:
value="3" “SCT” = SEPA
pattern = [A-Z0-9] credit transfer
Scope ebics: 0..1 | Specifies whose rules have Scope is
ScopeStringType to be taken into account for subject to an
(simple) the service. This means external code
restriction base: which market / community list
minLength defined the rules. External (maintained by
value="2" scope name list specified EBICS).
maxLength and maintained by EBICS.
value="3" A missing scope element 2-char country
means globally accepted codes
rules. 3-char codes
for other
scopes
“BIL” means
bilaterally
agreed
The meaning
of a missing
Scope element
is global.
Instead of a
missing scope
element it can
© EBICS SC Page: 97

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

also be
provided as
code “GLB”.
ServiceOption ebics:CodeString 0..1 | Optional characteristic(s) of ServiceOption
Type (simple) a service is subject to
restriction base: external code
minLength lists (global,
value="3" market,
maxLength bilateral)
value="10" Examp|e:
pattern = [A-Z0-9] “URG” =
urgent
Container ebics:ContainerF 0.1 | Flagtoindicate the use of a | Only value
lagType container true allowed.
No presence
means false
Container@cont ebics:Containers 1.1 Indicates what type of If the container
ainerType tringType (simple) container is used. Flag is
restriction base: present, one of
minLength the internal
value="3" values has to
maxLength be used
value="3" (internal code
pattern = [A-Z0-9] list)
“XML”
“ZIP”
“SVC”
MsgName ebics: 1 message names starting “pain.001”,
MessageNameStrin with a BA code (ISO) or MT “mt103”
9Type (FIN) or string to be Message
(simple) evaluated names (issued
restriction base:
minLength by m.a.rket.s,
—nqn specified in
value="1 p »
maxLength scope’) are
—na also allowed
value="10
pattern = [a-2\.0-9]
MsgName@versio ebics:NumString 0..1 Used ISO version of “03”
n (simple) message, ignored if no 1ISO
restriction base: message name
minLength
value="2"
maxLength
value="2"
pattern = [0-9]
MsgName@varian ebics:NumString 0..1 Evaluated together with “001”
t (simple) <MsgName>, ignored if no
restriction base: ISO message name
minLength
value="3"
©EBICS SC Page: 98

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

55.1.2

maxLength
value="3"
pattern = [0-9]

MsgName@format ebics:CodeString Evaluated together with ~XML*, ,ASN1“,
(simple) <MsgName>, admissible ~JSON*, ,PDF*
restriction base: for each kind of message
minLength name, but only to be used if
value="1" it is not the standard format
maxLength for the used message
value="4" standard (especially non-
pattern = [A-Z0-9] XML for ISO 20022).

SignatureFlag SignatureFlagTyp Flag to indicate the Only value
e presence of ES’ (see rules true allowed.

in combination with No presence
requestEDS Flag) means false
SignatureFlag@ boolean If present the order shall be Only value
requestEDS authorized within EBICS true allowed.
(Details regarding bank No presence
server reactions refer to means false
chapter 3.14)

Parameter Generic oder params:
Any number of Name-Value
pairs can be specified

Name boolean Name of parameter

Value anySimpleType Value of parameter

Value@type NCName Type of value Recommen-

dation for a

default is

string
Processing of EBICS messages

Chapter 5.5.1.1 describes the contents of the EBICS messages that are exchanged within
the framework of an upload transaction. The subject of this chapter is the processing of
these EBICS messages at the bank’s end. Action sequences are pointed out in the flow
diagram in Diagram 34, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing
step produces a return code (RC) whose value is equal to 0 (“000000”, EBICS_OK) if it has
been possible to successfully complete this step. The technical return code (RCT) and the
bank-technical return code (RCF) are set depending on the RC, and their values then flow
into the EBICS messages.

The validity of the EBICS request is verified on the basis of the XML schema definition file
“ebics_request_H005.xsd”, and with due regard to the restrictions that have been specified
for the individual requests in Chapter 5.5.1.1. The validity verification usually takes place in
parallel and/or interlocked with the other process steps in processing the EBICS request.
The following processes dispense with representation of a process step of type “EBICS

© EBICS SC

Page: 99

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

request validity verification” in favour of the simplest possible representation. In
consequence, these processes can be terminated by the following additional technical
errors:

EBICS_INVALID_XML
The received EBICS XML message does not conform to the specifications of the XML
schema in view of syntax. The XML code is not well-formed or, according to the schema,
not valid. For example, if the upload request does not contain the element HostId (that
the schema requires).

EBICS_INVALID REQUEST
The received EBICS XML message does not conform to the EBICS specifications in view of
syntax, for example, if the upload request does not contain the element NumSegments
(which is optional according to the XML schema, but required according to chapter
5.5.1.1.1).

EBICS_INVALID_REQUEST_CONTENT
The received EBICS XML message does not conform to the EBICS specifications in view of
semantics although being correct according to the schema.

55.1.2.1 Processing in the initialisation phase

I.b.

Diagram 44 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the initialisation stage of an upload
transaction. The individual processing steps are explained in greater detail in the following
text:

Generation of an EBICS transaction (see Diagram 43)

This processing step is relevant for both upload and download transactions. The following
description takes both transaction types into consideration so that the following chapters on
the subject of download transactions will be able to refer to this description.

Verifying the identifier for the business transaction (and administrative order
as well)

Verification of the order type returns the technical return code

EBICS_INVALID ORDER_IDENTIFIER in the case of an invalid administrative order type
or rather an invalid combination of BTF identifiers, or the technical return code

EBICS _UNSUPPORTED_ORDER_IDENTIFIER in the case of a valid but optional order
that is not supported by the bank system.

Replay test

© EBICS SC Page: 100

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

l.c.

The replay test returns the following return code EBICS_TX_MESSAGE_REPLAY if the
EBICS request is a replayed request. Details on replay avoidance can be found in the
Appendix (Chapter 11.4).

Verifying the authenticity of the EBICS request (see Diagram 41):

The identification and authentication signature is provided by a technical subscriber, if such
is a component of the control data. Otherwise the identification and authentication signature
is generated by a (non-technical) subscriber of the EBICS transaction who submits the
order or, subsequently, bank-technical ES’s that relate to an existing order. In order to be
able to verify the identification and authentication signature of a subscriber (technical or
non-technical), the corresponding combination of customer and subscriber ID must be
registered in the bank system and the state of the subscriber must be set to “Ready”. In
error situations that result from an invalid combination of customer ID / subscriber ID or an
inadmissible subscriber state, the sender receives the technical return code

EBICS AUTHENTICATION_FAILED.

Verification of the identification and authentication signature contains:

- A verification as to whether all required elements of the EBICS message have been
signed with the identification and authentication signature: These are all XML elements
of the EBICS request whose attribute value for Gauthenticate is equal to “true”.

- Verification of the identification and authentication signature itself.

This processing step terminates with the technical error
EBICS_AUTHENTICATION_FAILED if the identification and authentication signature
cannot be successfully verified.

If the successfully-verified signature originates from a technical subscriber, the validity and
the state of the (non-technical) subscriber is also verified. Errors that result from an invalid
combination of customer ID/ subscriber ID or an inadmissible subscriber state are
communicated to the sender of the EBICS request with the help of the technical error codes
EBICS_USER_UNKNOWN and EBICS_INVALID_USER_STATE.

Reason: If the identification and authentication signature cannot be successfully verified,
the EBICS request potentially originates from an attacker. In this event, errors such as
“Unknown subscriber” or “Inadmissible subscriber state” are not forwarded to the sender of
the EBICS request so that potential attackers are not given precise information on the
validity of subscriber IDs or the state of subscribers. However, after the identification and
authentication signature of the technical subscriber has been successfully verified, the
errors EBICS_USER_UNKNOWN and EBICS_INVALID_USER_STATE, which relate to the
non-technical subscriber of the EBICS transaction, are forwarded to the authenticated
sender.

Verifying the hash value of the bank keys

This verification is intended to prevent a subscriber from submitting orders when they are
not in possession of the financial institution’s current public keys. In Version “H005” of
EBICS the ES of the financial institutions is only planned (see Chapter 3.5.2). For this
reason, only the hash values of the public identification and authentication key and the
public encryption key are verified in Version “H005”. In this processing step, subsequent
EBICS versions that support the financial institution’s ES must also verify the hash value of

© EBICS SC Page: 101

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

the financial institution’s public bank-technical key. For this reason, the subscriber transfers
the hash values of the financial institution’s public key with which they have been provided.
The bank system verifies these hash values. If they do not match the hash values of the
current public keys, transaction initialisation is terminated with the technical return code
EBICS_BANK_PUBKEY_UPDATE_REQUIRED.

If the subscriber does not have the financial institution’s current identification and
authentication they cannot successfully verify the identification and authentication signature
of the financial institution’s EBICS response. Nevertheless, when the error
EBICS_BANK_PUBKEY_UPDATE_REQUIRED occurs it should be verified as to whether
the bank keys are up-to-date, and if necessary the latest keys should be downloaded with
the help of the administrative order type HPB.

Subscriber-related order verifications (see Diagram 42)

l.e.a. Verifying authorisation for the business transaction (and administrative
order as well)

This verifies as to whether the subscriber is entitled to submit the order (administrative
order type or business transaction format) in question. If this verification fails, transaction
initialisation is terminated with the business related error
EBICS_AUTHORISATION_ORDER_FAILED.

In the case of upload orders, order type authorisation is successful if the subscriber has at
least ES authorisation of class “T” for the order in question.

Note: The ES authorisation of the actual signatory of the order is not verified here. This
verification is a part of the (optional) preliminary verification of an order.

In the case of download orders, the order authorisation is not coupled to an ES
authorisation. It is verified as to whether the subscriber is authorised for the order type in
guestion.

l.e.b. Bank-technical preliminary verification

This verification only affects upload orders, details of the preliminary verification are given
in Chapter 5.3.

If the optional preliminary verification of orders is principally not supported by the financial
institution, but the EBICS request contains data for preliminary verification of the order,
the information EBICS_NO_ONLINE_CHECKS is returned.

This technical information has no influence on the ongoing transaction. The order is
continued.

The bank-technical preliminary verification of an upload order returns the following
business related return codes in the event of an error:
EBICS_SIGNATURE_VERIFICATION_FAILED

This business related error occurs when the ES of the order signatory could not be
successfully verified

EBICS_INVALID_SIGNATURE_FILE_FORMAT
The submitted ES data do not conform to the specified format.

© EBICS SC Page: 102

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

EBICS_ PARTNER_ID_MISMATCH
The partner ID (=customer ID) of the ES file differs from the partner ID (=customer ID) of
the submitter.

e EBICS ACCOUNT_AUTHORISATION_FAILED
This business related error code is returned when the account authorisation verification
fails for one of the signatories

e EBICS AMOUNT_CHECK_FAILED
This business related error occurs when the limit verification fails for one of the
signatories

e EBICS_SIGNER_UNKNOWN
This business related error occurs when one of the signatories is not a valid subscriber

e EBICS_INVALID_SIGNER_STATE
This business related error occurs when the state of one of the signatories is not equal to
“‘Ready”.

For Return codes relating to CA-issued certificates, refer to Annex 1.

l.e.c. Order number verification
The following verifications only relate to business related upload orders:

1) It is only permitted to send business related orders without an order number.
2) Files which only contain an ES but no further data are not allowed except for the
administrative order types HVE and HVS (and SPR as well).

3) For HVE and HVS please note that the aforesaid refers to the order number of HVE itself
(and HVS, respectively) and not to the related order in the EDS. It is self-evident that this
(related) order number has to be always transmitted (via OrderParams).

Hence the possible error codes for upload requests are:

e For an SPR (and HVE and HVS, respectively) upload request which is submitted with
an order number, the code EBICS_INVALID_REQUEST_CONTENT is returned

e For the administrative order types HVE or HVS submit an unknown order number, the
code EBICS_ORDERID_UNKNOWN is returned

e For an HVE- or HVS upload request which is submitted with an already assigned order
which has, however, an invalid processing state (because the order has already been
fully authorized or rejected) the code EBICS_ORDERID_ALREADY_FINAL is returned.

Rule for an upload response: Every upload response contains TransactionlD and Orderld
assigned by the server (also in the case of an error)

If. Generation of a new EBICS transaction with unambiguous transaction ID

When all of the previous verifications have been successfully carried out and more
transaction steps follow, the EBICS transaction administration generates a new EBICS
transaction at the bank’s end with a transaction ID that is unambiguous throughout the bank

© EBICS SC Page: 103
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

system. Details on generation of the transaction ID are given in the Appendix (Chapter
11.6).

Pre-processing

Here, pre-processing relates to the transmitted ES’s and the order parameters of all orders
considered in this chapter except the administrative order types HVE and HVS. Pre-
processing is not a component of the EBICS specification and is thus dependent on bank
system implementation. For example, intermediate storage of ES’s and order parameters is
a part of this pre-processing.

Forwarding to managment of pending orders

For the administrative order types HVE and HVS the the EBICS transaction comprises a
single request/response pair. In this case the transmitted order parameters and ES’s are
forwarded directly to the management of pending orders and the transaction is terminated.
The component ‘management of pending orders’ is not a part of the EBICS standard.

Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer
system. In the event of an error, this EBICS message contains the corresponding technical
or business related error code of preceding process steps. The contents of this EBICS
message are described in greater detail in Chapter 5.5.1.1.1.

© EBICS SC Page: 104
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Authentication Check of the EBICS-Request

else

USR = user

[EBICS message transmitted
by a technical user]

[USR =technical user]

<&
<

Validity check
USR ID/ partner ID

[RC # 0]

[RC=0]

state check for USR
Valid states: Ready

[RC #0]

[RC = 0]

Authentication signature verification
(signature created by USR)

[RC #0]

[RC = 0]

[USR == user]

RCT = EBICS_AUTHENTICATION_FAILED
RCF=0

[else]

user ID/ partner ID

v
[RC # 0] J RCT = EBICS_UNKNOWN_USER :>_,<:>
'| RCF=0

[Validity check]

[RC = 0]

Valid states: Ready

[RC#0] [RcT=EBICS INVALID USER STATE
'| RCF=0

[state check for user

Diagram 41: Detailed description of the process step “Authentication check of the EBICS
request”

© EBICS SC Page: 105
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

I

User related order checks

[Check of authorization AdminOrderType and BTF identifier]

;l RCT =0 |

'| RCF = EBICS_AUTHORIZATION_FAILEDl

[Creditinstitute
supports
prevalidatior] N

[RC # 0]
[RC=0]
[Upload] o
[Download]
else

Al Order Prevalidation

[RC=0] |

check of order attributes

[RC # 0]

N
»

5] RCT=0

[RC=0]

"l RCF=RC

Diagram 42: Detailed description of the process step “User related order checks”

© EBICS SC

Page: 106
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

I Creation of an EBICS transaction

[Check AdminOrderType and BTF identifier]

Replay Test

RCT = EBICS_TX_MESSAGE_REPLAY]
RCF=0

[RC = 0]

Authentication check of the EBICS request

else
> > <
>

[RCT = 0 and RCF = 0

Hash value checks of the credit institute’s public keys

4
[RC Z0] RCT = EBICS_BANK_PUBKEY_UPDATE_REQUIRED N :>_><:>
RCF=0

User-related order checks

[RC=0]

else

[RCT =0 and RCF = 0]
[Upload]

[Download]
file upload

Creation of an EBICS transaction
with a unique transaction ID

upload ES only

A

Diagram 43: Detailed description of the process step “Creation of an EBICS transaction”

© EBICS SC Page: 107
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

0—»[Receiving EBICS request

A 4

Creation of an EBICS transaction

rh

else

[RCT =0 and RCF = 0]

Preprocessing: EUs, order parameters

[EBICS response creation]

v
@4—[Sending EBICS response]

Diagram 44: Processing the EBICS request from transaction initialisation

55.1.2.2 Processing in the data transfer phase

The processing at the bank’s end of the EBICS request that is transmitted in the data
transfer phase from the customer’s system to the bank’s system is represented in Diagram
46 and Diagram 47. The individual processing steps are explained in greater detail in the
following text:

Verifying the EBICS transaction (see Diagram 45)

This processing step is relevant for both upload and download transactions. The following
description takes both transaction types into consideration so that the following chapters on
the subject of download transactions will be able to refer to this description.

lL.a. Verifying the transaction ID

A verification is carried out as to whether the EBICS transaction with the corresponding ID
exists as an open, not yet completed, transaction in the bank system’s EBICS transaction
administration system. If this is not the case, the technical error code
EBICS_TX_UNKNOWN_TXID is returned to the sender of the EBICS request.

I b.Verifying the authenticity of the EBICS request (see Diagram 41)
This EBICS request authenticity verification takes place in exactly the same way as in the

© EBICS SC Page: 108
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

initialisation phase of the transaction (see Chapter 5.5.1.2.1, I.c) — apart from the fact that
the required data (e.g. customer/subscriber ID) is not part of the header data of the EBICS
request but is stored in the financial institution’s transaction administration with the
transaction ID in question. If the verification cannot be carried out successfully the EBICS
response contains a corresponding error code in accordance with the sequence shown in
Diagram 41. This is one of the errors EBICS_AUTHENTICATION_FAILED,
EBICS_USER_UNKNOWN or EBICS_INVALID_USER_STATE. Unauthenticated requests
do not have any effect on the state of the transaction in the bank system’s transaction
administration. Data that has an effect on the state of a transaction such as e.g. the next
expected transaction step or the current recovery counter, is not changed. This prevents
attackers from being able to have any effect on a transaction with the help of
unauthenticated EBICS requests. The transaction can be continued by the subscriber as if
the EBICS request with the invalid identification and authentication signature had not been
received.

| c. Verifying TxPhase/ TxStep from the EBICS request

At this point, a verification is carried out as to whether the transaction step from the EBICS
request matches the current state of the EBICS transaction in the bank system if one
assumes a specific sequential order for the transaction steps.

In the case of an upload transaction, the sequential order according to Diagram 34 is
assumed. Verificationing of the transaction phase / transaction step is successful when:

= The last transaction step initialised by the subscriber has been successfully
completed, i.e. initialisation and transmission of the n' data segment was successful.

= The transaction step from the EBICS request is the next transaction step in the
sequential order of transaction steps, i.e. it is the transmission of the 1% or the (n+1)"
data segment.

The normal sequential order of transaction steps of a download transaction is shown in
Diagram 51. The transaction phase / transaction step is deemed to have been successfully
verified when the following two conditions are met:

= The last transaction step initiated by the subscriber has been successfully implemented,
i.e. the initialisation (and hence transmission of the first data segment, or the request of
the n'" data segment within the framework of the data transfer were successful.

= The transaction step from the EBICS request is the next transaction step in the
sequential order of the transaction steps, i.e. it is the request for the (n+1)™" data
segment or acknowledgement of the downloaded data where n represents the last data
segment.

1. Evaluation of the EBICS transaction verification results
If the transaction step verification was unsuccessful, then:

© EBICS SC Page: 109
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

A verification is carried out as to whether the upload transaction can be recovered, if
the bank system supports the recovery of transactions. This verification is carried out in
accordance with the description in Chapter 5.5.2. The technical error code
EBICS_TX_RECOVERY_SYNC is returned if the transaction can be recovered, otherwise
the transaction is terminated with the technical error code EBICS_TX_ABORT.

The upload transaction is terminated with the business related error code
EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support transaction
recovery. If MAX is set to 0, the flow diagram also considers the case where recovery is not
supported.

Verifying segment number and segment size

The serial number of the transmitted order data segment
(ebicsRequest/header/mutable/SegmentNumber) must be less than or equal to the
total number of data segments that are to be transmitted. If the number of transmitted order
data segments matches the total number, the value of attribute
ebicsRequest/header/mutable/SegmentNumber@lastSegment must also be equal
to “true”. If one of these two conditions is not fulfilled, the transaction is terminated with the
technical error code EBICS_TX_SEGMENT_NUMBER_EXCEEDED.

If the serial number of the transmitted order data segment is less than the total number of
the order data segments that are to be transmitted and the value of attribute
ebicsRequest/header/mutable/SegmentNumber@lastSegment is nevertheless
“true”, then technical return code EBICS_TX SEGMENT_ NUMBER_UNDERRUN of error
class “Note” is returned.

The size of the transmitted order data segment may not exceed the segment size of 1 MB
that has been firmly specified for EBICS “H005”. Otherwise the transaction is terminated
with the technical error code EBICS_SEGMENT_SIZE _EXCEEDED.

Pre-processing

Here, pre-processing relates to the transmitted order data segment. Pre-processing of order
data segments is not part of the EBICS specification. It is dependent on the bank system
implementation, intermediate storage of the order data segment may be a part of pre-
processing.

Forwarding to management of pending orders

If the transmitted order data segment was the last one, and the matter at hand is a bank-
technical upload order, all of the order parameters, ES’s and order data transmitted within
the framework of the EBICS transaction are forwarded to the management of pending
orders. Following this, the EBICS transaction can be terminated.

The component ‘management of pending orders’ is not a part of the EBICS standard.

(Optional) check for double upload : As the data digest of the order data is transmitted
within the transfer phase the bank server has the option to control by means of the data
digest if the order has already been transmitted (if necessary also by taking other order
information into consideration). If the order already exists on the server (same data digest
was already transmitted recently), the request will be rejected by the return code
EBICS_ORDER_ALREADY_EXISTS.

© EBICS SC Page: 110
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Note: Checks basing on this data digest are optional as double uploads can also be
supervised by taking other action within the implementation.

VI. Verifying and implementing the order

If the transmitted order data segment was the last one, and if the order is a system-related
upload order, it is synchronously verified and implemented on the basis of the transmitted
order data. The returned technical or business related error codes are dependent on the
order type and are defined in the chapters in which these order types are described.

VII.

Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer
system. In the event of an error, this EBICS message contains the corresponding technical
/ business related error code of the preceding process steps. The contents of this EBICS
message are described in greater detail in Chapter 5.5.1.1.2.

EBICS transaction verification

Validity check
TXID

[RC#0] RCT = EBICS_TX_UNKNOWN_TXID

RCF=0

[RC = 0]

{ Authentication check of the EBICS request

b

else

[RCT = 0 and RCF = 0]

Check TxPhase/ TxStep from the EBICS request]

T

Diagram 45: Detailed description of the process step “EBICS transaction verification”

© EBICS SC Page: 111
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

O—P[Receiving EBICS request]

EBICS transaction verification

rh

[RCT =0 and RCF = 0]

Y [RC#0] [RecoveryCounter == MAX] J EBICS transaction abort
g '[(release of resources)
[RecoveryCounter
[RC=0] <MAX]
Y

RCT = EBICS_TX_RECOVERY_SYNC
RCF=0 RCT = EBICS_TX_ABORT
RecoveryCounter++ RCF=0

) 4 |

Diagram 46: Processing an EBICS request for transmission of an order data segment (part
1)

© EBICS SC Page: 112
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

[Segment number / size check]

[RCT ==
[RC # 0] *EXCEEDED]

EBICS transaction abort

(release of resources)
[RC=0]

[Preprocessing: order data segment]

RCT =RC
RCF =0

4

\ 4

[RC = 0]
Y

A\ 4

[last segment]

business-driven .
E)rder] Forwarding the order data,

order parameters and order EUs to the
[system-related Management of outstanding orders

order]

Order check and order execution

[RCis a
[RC # 0] non-technical error]k RCT =0

"| RCF=RC
[RC=0] else

A

EBICS transaction closure
(release of resources)

A

[EBICS response creation]

@4—[Sending EBICS response]

Diagram 47: Processing an EBICS request for transmission of an order data segment (part
2)

© EBICS SC Page: 113

Status: Final V 3.0.2

5.5.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Recovery of upload transactions

The customer system can initiate the recovery mechanism when one of the following error
situations occurs:

Transport error during transmission of an EBICS request in the data transfer phase of the
transaction

Timeout or transport error when receiving an EBICS transaction in the data transfer
phase of the transaction

Loss of the transaction state at the subscriber’s end.

Incorrect processing of an EBICS request at the bank’s end during the data transfer phase,
caused by e.g. errors in the pre-processing of a transmitted order data segment, may
require renewed transmission of this request. This is a special recovery case, since the
customer system does not recognise the necessity for repetition of the transmission without
further action. This special case can be dealt with by the EBICS recovery mechanism.

EBICS uses an optimistic approach when recovering an upload transaction and dispenses
with a separate synchronisation step with the bank system. If one of the above error
situations occurs, the customer system initially assumes knowledge of the transaction’s
recovery point due to the transaction data stored (possibly in a sustained manner) in the
customer system.

If the customer system assumes that the recovery point is the transmission of the n™ order
data segment, then the next initiated transaction step is transmission of the (n+1)" order
data segment. EBICS requests within the framework of the recovery of upload transactions
do not differ from the EBICS request of a normal, error-free flow of an upload transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown
in Diagram 48. In each case, the recovery takes place without explicit synchronisation
between the customer system and the bank system. The 2" order data segment is
transmitted three times since the customer system could not receive the corresponding
EBICS response due to a timeout or a transport error. On the second and third transmission
of the 2" order data segment, the customer system assumes that the recovery point is
transmission of the 1% order data segment. The value of the recovery counter is equal to 2
after the third and successful transmission of the 2" order data segment, since the last two
transmissions of the 2" order data segment were evaluated as recovery attempts by the
bank system. The transaction finally fails due to the number of recovery attempts being too
high.

If the assumption regarding the recovery point is false, the EBICS response for
transmission of the (n+1)" data segment receives the actual recovery point of the
transaction in addition to the technical return code EBICS_TX RECOVERY_SYNC. For
example, if this recovery point is the transmission of order data segment k, the transaction
can easily be resumed after this synchronisation with transmission of segments k+1, k+2,
etc.

© EBICS SC Page: 114

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 49 shows the successful flow of a transaction that contains a recovery of the
transaction after an explicit synchronisation between the customer system and the bank
system. Here, the customer system transmits order data segment 1 in a state in which the
bank system actually expects segment 3. The financial institution’s EBICS response (see
Diagram 50) thus contains the recovery point of the transaction, which in this case is
transmission of the 2" order data segment. Following this, the customer system continues
with transmission of order data segment 3 and ends the transaction with the transmission of
the last segment 4.

Independent of whether a customer system detects errors in the flow of a transaction, the
bank system can force renewed transmission of an EBICS request. Analogously to the
above recovery situations, this is achieved by the associated EBICS response containing
the technical return code EBICS_TX_RECOVERY_SYNC as well as the recovery point of
the transaction.

© EBICS SC Page: 115
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Bank system

RecoveryCounter == 0,
recovery point:
initialisation

RecoveryCounter == 0,
recovery point:
transfer/ segment 1

RecoveryCounter == 0,
recovery point:
transfer/ segment 1

RecoveryCounter == 1,
recovery point:
transfer/ segment 1

RecoveryCounter == 2 == MAX,
recovery point:
transfer/ segment 2

RecoveryCounter == 2 == MAX,

recovery point:
transfer/ segment 2

Customer system Transport layer
transaction initialisation R
ok, unigue transaction ID = xxx
4— ———
transfer of data segment 1 for transaction xxx
ok
= = = = = e e e = e = e = =]
transfer of data segment 2 for transaction xxx
transmission failure, timeout
T I
1. transfer retry of data segment 2 for transaction xxx -
transmission failure, timeout
= = = = = o === ==
2. transfer retry of data segment 2 for transaction xxx R
L
transfer of data segment 3 for transaction xxx -
- transmission failure, timeout
1. transfer retry of data segment 3 for transaction xxx
T »
- — — — system-related error: EBICS_TX_ABORT

Diagram 48: Termination of the recovery of an upload transaction due to the maximum

number of recovery attempts being exceeded

© EBICS SC

Page: 116
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Customer system

Transport layer

transaction initialisation

Bank system

ok, unique transaktion ID = xxx

transfer of data segment 1 for transaction xxx

RecoveryCounter == 0,
recovery point:
initialisation

RecoveryCounter == 0,
recovery point:
transfer/ segment 1

transfer of data segment 1(# 3) for transaction xxx

RecoveryCounter == 0,
recovery point:
transfer/ segment 2

I

system-related return code: EBICS_TX_RECOVERY_SYNC,

recovery point: transfer/ data segment 2

transfer of data segment 3 for transaction xxx

RecoveryCounter == 1,
recovery point:
transfer/ segment 2

RecoveryCounter == 1,
recovery point:
transfer/ segment 3

v

Diagram 49: Recovery of an upload transaction with explicit synchronisation between

customer system and bank system

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse
xmlns="urn:org:ebics:HO05"

xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_response H005.xsd"

Version="H005" Revision="1">
<header authenticate="true">
<static>

<TransactionID>ABCDEF41394644363445313243ARCDEF</TransactionID>

</static>
<mutable>

<TransactionPhase>Transfer</TransactionPhase>

© EBICS SC

Page: 117
Status: Final V 3.0.2

5.6

5.6.1

EBICS specification
EBICS detailed concept, Version 3.0.2

<SegmentNumber lastSegment="false">2</SegmentNumber>

<0OrderId>OR01</OrderId>
<ReturnCode>061101</ReturnCode>

<ReportText>[EBICS_TX RECOVERY SYNC] Synchronisation necessary</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-morefrsa-sha256"/>
<ds:Reference URI="#xpointer (//* [@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>.. here hash value authentication ..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.. here siganture value authentication ..</ds:SignatureValue>
</AuthSignature>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 50: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

Download transactions

Sequence of download transactions

The sequence of a download transaction is shown in Diagram 51 by means of a flow
diagram. This sequence diagram shows the exchange of EBICS messages in the individual
phases of a download transaction. The first order data segment is contained in the EBICS
response of the transaction initialisation. All other order data segments are transmitted in a
loop that breaks off as soon as the last data segment has been received by the customer
system. (see loop break-off condition “[last data segment has been received]”). Finally, the
successful receipt of all order data segments is acknowledged by the customer system.

© EBICS SC Page: 118
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Customer system Bank system

transaction initialisation

|-
Ll
< ok, unique transaction ID = xxx, segment 1 of the requested data LJ

loop) [last segment has been transmitted]

request data segment for transaction xxx

< ok, transfer of data segment LJ

Diagram 51: Error-free sequence of a download transaction

5.6.1.1 Description of EBICS messages

For clarification purposes, the following description of the transaction steps in a download
transaction use example messages for the processing of the download of an end of period
statement (MT940) taking into account German rulebooks. It refers to elements of these
example messages, using XPath notation.

The following chapters describe the EBICS messages in the individual phases of a
download transaction. The data that is a component of these messages is listed here. Data
that is fundamentally optional is marked “(optional)’. Data that may only be missing under
certain conditions is instead marked “(conditional)”. Optional XML elements that are missing
in the description of an EBICS message relating to a specific transaction phase may not be
present in this EBICS message. Optional XML elements that are present in the description
of an EBICS message relating to a specific transaction phase MUST always be placed
correspondingly in this EBICS message.

EBICS requests for download transactions are (XML) instance documents that conform to
ebics_request H005.xsd and comprise the top-level element ebics which is declared in
ebics_request_H005.xsd. EBICS responses for download transactions are instance
documents that conform to ebics_response H005.xsd and comprise the top-level element
ebics which is again declared in ebics_response_H005.xsd.

5.6.1.1.1 EBICS messages in transaction initialisation
= Transmission of the following data in the EBICS request (see example in Diagram 52):

© EBICS SC Page: 119
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the
setting “Initialisation”

- Combination of Nonce and Timestamp to avoid replaying old EBICS messages
(ebicsRequest/header/static/Nonce,
ebicsRequest/header/static/Timestamp)

- Subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/UserID) thatis submitting an order or that is
providing bank-technical ES’s for an existing order.

- (Conditional) technical subscriber (ebicsRequest/header/static/PartnerID,
ebicsRequest/header/static/SystemID)
SystemID must be present if the customer system is a multi-user system. The technical
subscriber is responsible for the generation of the EBICS requests (including the
identification and authentication signatures) that belong to orders that are submitted or
bank-technically signed by the subscriber.

- (Optional) information on the customer product
(ebicsRequest/header/static/Product)

- Administrative Order type
(ebicsRequest/header/static/OrderDetails/AdminOrderType)

- Order parameters (ebicsRequest/header/static/OrderDetails/OrderParams)
The characteristics of the order parameters are dependent on the administrative order
type. For the download of business transaction formats the order parameters and usage
rules are specified in detail in chapter 5.6.1.1.4

- Hash values of the financial institution’s public keys that are available to the subscriber
(ebicsRequest/header/static/BankPubKeyDigests/Authentication,
ebicsRequest/header/static/BankPubKeyDigests/Encryption,
ebicsRequest/header/static/BankPubKeyDigests/Signature).

Both the utilised hash algorithm and the version of the corresponding identification and
authentication, encryption and signature process will be specified for each of these hash
values.

The SHA-256 hash values of the financial institution's certificates X002 and E002 are
composed by calculating the SHA-256 hash value of the certificate in DER binary format
In Version “H005” of the EBICS protocol the ES of the financial institutions is only
planned (see Chapter 3.5.2). The element BankPubKeyDigests/Signature is
already contained in this description in preparation for future versions of EBICS, but in
Version “H0O05” its maximum frequency (maxOccurs) is set to 0.

- Security medium for the subscriber’s bank-technical
key (ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is available,
otherwise the identification and authentication signature of the subscriber themselves
(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of

© EBICS SC Page: 120
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

xmlns="urn:org:ebics:HOO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_ request H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<Nonce>98498A65465C645E645F64565462C645</Nonce>
<Timestamp>2005-01-30T15:40:45.1237</Timestamp>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR001</UserID>
<Product Language="en" InstituteID="Institute ID">Product Identifier</Product>
<OrderDetails>
<AdminOrderType>BTD</AdminOrderType>
<BTDOrderParams>
<Service>

<ServiceName>EOP</ServiceName>
<Scope>DE</Scope>

<MsgName>mt940</MsgName>
</Service> <DateRange>
<Start>2016-09-01</Start>
<End>2016-09-30</End>
</DateRange>
</BTDOrderParams>
</OrderDetails>
<BankPubKeyDigests>
<Authentication Version="X002"

Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTvV2n/tCp+3UIQQ=</Authentica
tion>

<Encryption Version="EQ02"

Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">2joEROI30920IFP394+W0Ier2WI=</Encryption
>

</BankPubKeyDigests>
<SecurityMedium>0000</SecurityMedium>
</static>
<mutable>
<TransactionPhase>Initialisation</TransactionPhase>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue> ..here hash value for authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

© EBICS SC Page: 121
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<ds:SignatureValue> ..here authentication signature..</ds:SignatureValue>
</AuthSignature>
<body/>
</ebicsRequest>

Diagram 52: EBICS request for transaction initialisation for download of an end of period
statement (MT940)

= Transmission of the following data in the EBICS response (see example in Diagram 53)
- Bank-technical return code (ebicsResponse/body/ReturnCode)
- Technical return code (ebicsResponse/header/mutable/ReturnCode)
- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system
(ebicsResponse/header/static/TransactionID), if no technical errors have
occurred during the transaction initialisation

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with the
setting “Initialisation”

- (Conditional) Total number of order data segments to be transmitted
(ebicsResponse/header/static/NumSegments), if no technical or bank-technical
errors have occurred

- (Conditional) Serial number of the order data segment transmitted in this response
(ebicsResponse/header/mutable/SegmentNumber), if no technical or bank-
technical errors have occurred.

SegmentNumber is always set to 1 in the initialisation phase. The attribute
ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies
whether it is the last data segment

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for @Gauthenticate is equal to “true”. The definition of
the XML schema “ebics_response H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

- (Conditional) information for encryption of the order data and possibly the ES of the order
data (ebicsResponse/body/DataTransfer/DataEncryptionInfo), if no errors
of a technical or bank-technical nature have occurred.

In particular, DataEncryptionInfo also contains the asymmetrically-encrypted
transaction key
(ebicsResponse/body/DataTransfer/DataEncryptionInfo/TransactionKe
y)

- (Conditional) The first order data segment
(ebicsResponse/body/DataTransfer/OrderData), if no errors of a technical or
bank-technical nature have occurred

© EBICS SC Page: 122
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

- (Conditional) The bank-technical ES of the order data from the financial institution
(ebicsResponse/body/DataTransfer/SignatureData), if no errors of a
technical or bank-technical nature have occurred.

In the EBICS protocol the ES of the financial institutions is only planned (see Chapter
3.5.2).

- (Optional) time stamp for the last updating of the bank parameters
(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>
<ebicsResponse
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics response H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
<NumSegments>2</NumSegments>
</static>
<mutable>
<TransactionPhase>Initialisation</TransactionPhase>
<SegmentNumber lastSegment="false">1</SegmentNumber>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS OK] OK</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue> ..here data digest authentication ..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue> .here authentication signature..</ds:SignatureValue>
</AuthSignature>
<body>
<DataTransfer>
<DataEncryptionInfo authenticate="true">

<EncryptionPubKeyDigest Version="E002"
Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256">..here hash value of the public bank key
for encryption..</EncryptionPubKeyDigest>

<TransactionKey>En6KEB6ArEzw+ig4Nlwm6Eptcyx..</TransactionKey>
<HostID>EBIXHOST</HostID>
</DataEncryptionInfo>
<OrderData>..</OrderData>
</DataTransfer>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 53: EBICS response for transaction initialisation for the download of an end of
period statement (MT940)

© EBICS SC Page: 123
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

56.1.1.2 EBICS messages in the data transfer phase
= Transmission of the following data in the EBICS request (see example in Diagram 54):
Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)
Data for identification of the current transaction step:
- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the
setting “Transfer”

- Serial number of the order data segment that is to be downloaded in this transaction step
(ebicsRequest/header/mutable/SegmentNumber)
Attribute ebicsRequest/header/mutable/SegmentNumber@lastSegment has no
meaning for this EBICS request

Identification and authentication signature of the technical subscriber, if such is available,
otherwise the identification and authentication signature of the subscriber themselves
(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of the
XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

<?xml version="1.0" encoding="UTF-8"7?>

<ebicsRequest

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
</static>
<mutable>
<TransactionPhase>Transfer</TransactionPhase>
<SegmentNumber lastSegment="false">2</SegmentNumber>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//* [@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>.. here hash value for authentication..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo> <ds:SignatureValue> .here authentication signature..</ds:SignatureValue>

© EBICS SC Page: 124
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

</AuthSignature>
</body>
</ebicsRequest>

Diagram 54: EBICS request for transmission of the next order data segment for the
download of an end of period statement (MT940)

Transmission of the following data in the EBICS response (see example in Diagram 55)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identifying a transaction step

If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this
transaction step identifies the last recovery point of the download transaction. However,
if no technical or business related errors have not occurred in this example, this
transaction step reflects the current transaction step:

Transaction ID (ebicsResponse/header/static/TransactionID)
Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber).

This is the number of the order data segment that has been requested in the EBICS
request or, in the event of the error EBICS_TX_RECOVERY_SYNC, the number of the
last order data segment that has been successfully transmitted to the customer system by
the bank system. In the event of the error EBICS_TX_RECOVERY_SYNC, the value of
SegmentNumber is always equal to 1 if the value of TransactionPhase is
“Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment
specifies whether it is the last order data segment.

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for @Gauthenticate is equal to “true”. The definition of
the XML schema “ebics_response HO005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

- (Conditional) The requested order data segment

(ebicsResponse/body/DataTransfer/OrderData), if no errors of a technical or
bank-technical nature have occurred.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_response H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">

© EBICS SC Page: 125

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<static>
<TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
</static>
<mutable>
<TransactionPhase>Transfer</TransactionPhase>
<SegmentNumber lastSegment="true">2</SegmentNumber>
<ReturnCode>000000</ReturnCode>
<ReportText>[EBICS OK] OK</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>.. here hash value for authentication ..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.here authentication signature.. </ds:SignaturevValue>
</AuthSignature>
<body>
<DataTransfer>
<OrderData>..</OrderData>
</DataTransfer>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 55: EBICS response for transmission of the last order data segment for the
download of an end of period statement (MT940)

5.6.1.1.3 EBICS- messages in the acknowledgement phase
. Transmission of the following data in the EBICS request (see example in Diagram 56)

- Host ID of the EBICS bank computer system
(ebicsRequest/header/static/HostID)

- Data for identification of the current transaction step:
- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the

setting “Receipt’

- Identification and authentication signature of the technical subscriber, if such is available,
otherwise the identification and authentication signature of the subscriber themselves
(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS
request whose attribute value for @authenticate is equal to “true”. The definition of
the XML schema “ebics_request_HO005.xsd“ guarantees that the value of the attribute

© EBICS SC Page: 126
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

@authenticate is equal to “true” for precisely those elements that also need to be
signed

- Acknowledgement (ebicsRequest/body/TransferReceipt/ReceiptCode):
The value of the acknowledgement is 0 (“positive acknowledgement”) if download and

processing of the order data was successful. Otherwise the value of the
acknowledgement is 1 (“negative acknowledgement”).

<?xml version="1.0" encoding="UTF-8"?2>

<ebicsRequest

xmlns="urn:org:ebics:HOO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics request H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<HostID>EBIXHOST</HostID>
<TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
</static>
<mutable>
<TransactionPhase>Receipt</TransactionPhase>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//*[@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>..here hash value for authentication ..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.. here authentication signature..</ds:Signaturevalue>
</AuthSignature>
<body>
<TransferReceipt authenticate="true">
<ReceiptCode>0</ReceiptCode>
</TransferReceipt>
</body>
</ebicsRequest>

Diagram 56: EBICS request for the acknowledgement of download data

Transmission of the following data in the EBICS response (see example in Diagram 57)

- Bank-technical return code (ebicsResponse/body/ReturnCode)
- Technical return code (ebicsResponse/header/mutable/ReturnCode)
- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identification of a transaction step:
If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this
transaction step identifies the last recovery point of the download transaction. However,

© EBICS SC Page: 127
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

if no technical or business related errors have occurred, this transaction step reflects the
current transaction step, i.e. acknowledgement of the download data:

- Transaction ID (ebicsResponse/header/static/TransactionID)
- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- (Conditional) Serial number of the order data segment
(ebicsResponse/header/mutable/SegmentNumber) if the error
EBICS_TX_RECOVERY_SYNC has occurred and consequently the value of
TransactionPhase is “Initialisation” or “Transfer”.

This is the number of the order data segment that, from the bank system’s perspective,
was the last one to have been successfully transmitted to the customer system. The value
of SegmentNumber is always equal to 1 if the value of TransactionPhase is
“Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment
specifies whether it is the last order data segment.

- Identification and authentication signature of the financial institution
(ebicsResponse/AuthSignature)
The identification and authentication signature includes all XML elements of the EBICS
response whose attribute value for Qauthenticate is equal to “true”. The definition of
the XML schema “ebics_response H005.xsd“ guarantees that the value of the attribute
@authenticate is equal to “true” for precisely those elements that also need to be
signed.

<?xml version="1.0" encoding="UTF-8"7?>

<ebicsResponse

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_response H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
</static>
<mutable>
<TransactionPhase>Receipt</TransactionPhase>
<ReturnCode>011000</ReturnCode>
<ReportText>[EBICS POSTPROCESS DONE] positive receipt received </ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//* [@authenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>.. here hash value for authentication</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.. here authentication signature..</ds:SignatureValue>

© EBICS SC Page: 128
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

</AuthSignature>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 57: EBICS response for the acknowledgement of download data

5.6.1.1.4 Download Request Structure for Business Transaction Formats (BTF)
The standard process is described in chapter 5.6.1. The values of the order parameters are
positioned in ebicsRequest/header/static/OrderDetails

of the type BTDOrderParams which is usable in the upload direction and with order type
“BTD”:

© EBICS SC Page: 129
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

|

|

|

|

|

|

|

|

| I
| 0tz
|

|

|

|

|

|

|

|

a
bics:ServiceOption |1

‘=

ebics:ContainerFlagType

‘ [E sttributes :

version

A

-¥;pebies:Parameter E]

" ebics:Name

P

Diagram 58: BTF structure for download (using restricted service type)

© EBICS SC Page: 130
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

XML element/ Data type # Meaning Example
attribute
BTDOrderParams ebics:BTDParamsTy 1 Required to qualify an - (complex)
pe (complex) download business
transaction and the
used/corresponding
format
Service RestrictedService 1 Indicates the target - (complex)
Type (complex) system (nature)/process
to handle the
Transaction/File
ServiceName ebics: 1 Name of the service ServiceName
ServiceNameString is subject to an
Type (simple) - external code
restriction base: list
minLength value="3" (maintained by
maxLength value="3" EBICS) -
pattern = [A-Z0-9] Example:
“REP” =
Report
Scope ebics: 0.1 Specifies whose rules Scope is
ScopeStringType have to be taken into subject to an
(simple) account for the service. external code
restriction base: This means which market | list
minLength value="2" / community defined the (maintained by
maxLength value="3" rules. External scope EBICS).
name list specified and
maintained by EBICS. A 2-char country
missing scope element codes
means globally accepted 3-char codes
rules. for other
scopes
“BIL” means
bilaterally
agreed
The meaning
of a missing
Scope element
is global.
Instead of a
missing scope
element it can
also be
provided as
code “GLB".
© EBICS SC Page: 131

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ServiceOption ebics:CodeStringT 0..1 | Optional characteristic(s) ServiceOption
ype (simple) of a service is subject to
restriction base: external code
minLength value="3" lists (global,
maxLength value="6" market,
pattern = [A-Z0-9] bilateral)

Example:
“B2B” means
in the context
of
ServiceName
= “REP”: The
report only
contains
information
about B2B
debits

Container ebics:ContainerfFl 0..1 | Flag toindicate the use of Only value
agType a container true allowed.

No presence
means false

Container@cont ebics:Containerst 1.1 Indicates what type of If the container

ainerType ringType (simple) container is used. Flag is
restriction base: present, one of
minLength value="3" the internal
maxLength value="3" values has to
pattern = [A-Z0-9] be used

(internal code
list)

“XML”

“ZIP”

“SVC”

MsgName ebics: 1 message names starting “pain.002”,
MessageNameString with a BA code (ISO) or “mt940”

Type MT (FIN) or string to be Message
(simple) evaluated names (issued
restriction base:
minLength value="1" by markets,
specified in
maxLength “ ”
vallie="10" scope”) are
pattern = [a-2\.0-9] also allowed

MsgName@versio ebics:NumString 0..1 Used I1SO version of “03”

n (simple) message, ignored if no
restriction base: ISO message name
minLength value="2"
maxLength value="2"
pattern = [0-9]

MsgName@varian ebics:NumString 0..1 Evaluated together with “001”

t (simple) <MsgName>, ignored if
restriction base: no ISO message name
minLength value="3"

© EBICS SC Page: 132

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

maxLength value="3"
pattern = [0-9]

MsgName@format ebics:CodeString 0..1 | Evaluated together with ~XMLY,
(simple) <MsgName>, admissible JASN1T,
restriction base: for each kind of message JSON*, ,PDF*
minLength value="1" name, but only to be used
maxLength value="4" if it is not the standard
pattern = [A-Z0-9] format for the used

message standard
(especially non-XML for

ISO 20022).
dateRange DateRangeType 0..1 Specifies a date range for
(complex) data in the requested
message
start DateType 1 Start date (incl.) 2016-10-11
end DateType 1 End date (incl.) 2016-10-11
Parameter 0.1 Generic oder params:

Any number of Name-
Value pairs can be

specified
Name boolean 1.1 Name of parameter
Value anySimpleType 1.1 Value of parameter
Value@type NCName 1.1 | Type of value Recommen-
dation for a
default is
string

5.6.1.2 Processing the EBICS messages

Chapter 5.6.1.1 describes the contents of the EBICS messages that are exchanged within
the framework of a download transaction. The subject of this chapter is the processing of
these EBICS messages. Action sequences are pointed out in the flow diagram in Diagram
51, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing
step produces a return code (RC) whose value is equal to EBICS_OK (000000) if it has
been possible to successfully complete this step. The technical return code (RCT) and the
bank-technical return code (RCF) are set depending on the RC, and their values then flow
into EBICS messages.

The validity of the EBICS requests is verified on the basis of the XML schema definition file
“ebics_request_H005.xsd”, and with due regard to the restrictions that have been specified
for the individual requests in Chapter 5.6.1.1. The validity verification usually takes place in
parallel and/or interlocked with the other steps in processing the EBICS request. The
following processes dispense with representation of a process step of type “EBICS request
validity verification” in favour of the simplest possible representation. In consequence, these
processes can be terminated by the following additional technical errors:

© EBICS SC Page: 133
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

EBICS INVALID XML, EBICS INVALID REQUEST, or
EBICS_INVALID_REQUEST_CONTENT. For Return codes relating to CA-issued
certificates, refer to Annex 1

56.1.21 Processing in the initialisation phase

Diagram 59 shows processing at the bank’s end of the EBICS request which is sent from
the customer system to the bank system in the initialisation stage of a download
transaction. The individual processing steps are explained in greater detail in the following
text:

I Generation of an EBICS transaction (see 5.5.1.2.1 Point 1 and Diagram 43)
Il. Termination of the EBICS transaction

If the requested download data is not available, the EBICS transaction is terminated with
the business related return code EBICS NO _DOWNLOAD DATA AVAILABLE.

IIl. Provision of data

In this processing step the first order data segment is provided for the purpose of being
embedded in the EBICS response. If the financial institution uses the bank-technical ES’s
for the current order type and the current subscriber (submitter), the financial institution’s
bank-technical ES’s are also provided via the order data.

In Version “H005” of the EBICS protocol the ES of the financial institutions is only planned
(see Chapter 3.5.2). They are only taken into consideration here in preparation for future
EBICS versions.

The provision of download data is not a part of EBICS, it is dependent on the
implementation of the bank system.

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer
system. If all previous processing steps have been successful, this EBICS message
contains the first order data segment and possibly also the bank-technical signature for the
(entire) order data. In the event of an error, this EBICS message contains the
corresponding technical or business related error code. The contents of this EBICS
message are described in greater detail in Chapter 5.6.1.1.1.

© EBICS SC Page: 134
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

0—»[Receiving EBICS request]

A 4
RCT=0
RCF=0

A 4

Creation of an EBICS transaction

-+

else

[RCT =0 and RCF =0]

[No download data

v - .
available] J EBICS transaction closure
< 'L (release of resources)

[Download data
available] v

RCT =0
[RCF = EBICS_NO_DOWNLOAD_DATA_AVAILABLE]

4

Supply of the following data:
1st order data segment,
planned: order-related EU of the credit institute

A

[EBICS response creation

!

Sending EBICS response

Diagram 59: Processing the EBICS request of the initialisation phase of a download
transaction

5.6.1.2.2 Processing in the data transfer phase

Diagram 61 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the data transfer stage of an EBICS
transaction. The individual processing steps are explained in greater detail in the following

text:
l. Verifying the download transaction (see Diagram 60)

lL.a. Verifying the EBICS transaction (see 5.5.1.2.2 Point 1 and Diagram 45)
I.b. Evaluation of the EBICS transaction verification results

If the transaction step verification is unsuccessful, then:

Page: 135

© EBICS SC
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= A verification is carried out as to whether the download transaction can be
recovered, if the bank system supports the recovery of transactions. This verification is
carried out in accordance with the description in Chapter 5.6.2. If the verification is
successful, the technical return code EBICS _TX RECOVERY_SYNC is returned,
otherwise the transaction is terminated with the technical return code
EBICS _TX_ ABORT.

= The download transaction is terminated with the business related error code
EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support
transaction recovery. If MAX is set to O in the flow diagram, the case is also considered
where recovery is not supported.

1. Provision of data

In this processing step the requested order data segment is provided for the purpose of
being embedded in the EBICS response. The provision of download data is not a part of
EBICS, it is dependent on the implementation of the bank system.

Il Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer
system. If all previous processing steps have been successful, this EBICS message
contains the order data segment that was requested in the corresponding EBICS request.

In the event of an error, this EBICS message contains the corresponding technical business
related error code. The contents of this EBICS message are described in greater detail in
Chapter 5.6.1.1.2.

© EBICS SC Page: 136
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

I Download transaction verification

EBICS transaction verification

[else]
[RCT =0 and RCF = Q]
[RecoveryCounter
) < MAX]
Y [RC #0] Invalid Txstep RCT = EBICS_TX_RECOVERY_SYNC
> > > RCF = 0;
i L RecoveryCounter++
Valid [RecoveryCounter
Txstep == MAX]
[RC=0]
[RecoveryCounter
== MAX] . J EBICS transaction abort
(release of resources)
[RecoveryCounter l
< MAX] A\ 4
[RecoveryCounter++] [RCT= EBFL%'S:;TS(_ABORT }—> ><-

<

Diagram 60: Detailed description of the process step “Download transaction verification”

© EBICS SC Page: 137
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

0—»[Receiving EBICS request

\ 4
{ Download transaction verification }

r

[else]

[RCT = 0 and RCF = 0]

Supply of the requested
order data segment

[EBICS response creation]

A 4

@4—[Sending EBICS response]

Diagram 61: Processing an EBICS request for requesting a order data segment

5.6.1.2.3 Processing in the acknowledgement phase

Diagram 62 shows processing at the bank’s end of the EBICS request which is transferred
from the customer system to the bank system in the acknowledgement stage of an EBICS
transaction.

The individual processing steps are explained in greater detail in the following text:
Verifying the download transaction (see description in Chapter 5.6.1.2.2, Point 1)
Download post-processing

Positive acknowledgement means that it was possible to successfully download and
process the order data from the customer system. In contrast to negative
acknowledgement, the consequence of this is that finishing-off activities can now be carried
out on the bank system such as e.g. marking the order data as “downloaded”. The EBICS
transaction is terminated by the bank system, independent of the type of acknowledgement.

Termination of the EBICS transaction

Generation of the EBICS response
This processing step generates the EBICS response that is afterwards sent to the customer
system. In the event of positive acknowledgement, the technical return code
EBICS DOWNLOAD_ POSTPROCESS_DONE is returned, in the event of negative
acknowledgement the technical return code

© EBICS SC Page: 138

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

EBICS_DOWNLOAD_POSTPROCESS_SKIPPED is returned. In the event of an error, this
EBICS message contains the corresponding technical or business related error code. The
contents of this EBICS message are described in greater detail in Chapter 5.6.1.1.3.

O—D[Receiving EBICS request]

A 4
RCT =0
RCF =0

A 4

{ Download transaction verification }

h

else

[RCT =0 and RCF = 0]

»Negative” receipt | rer= EBICS_DOWNLOAD_POSTPROCESS_SKIPPED
d RCF=0

,Positive” receipt

[Download Postprocessing]

A 4

[RCT = EBICS_DOWNLOAD_POSTPROCESS_DONE]
RCF=0

A
A

EBICS transaction closure
(release of resources)

y

[EBICS response creation]

A

@4—[Sending EBICS response]

Diagram 62: Processing of an EBICS request for acknowledgement within the framework of
a download transaction

5.6.2 Recovery of download transactions

Recovery of download transactions is always initiated by the customer system. The reasons
for a recovery are analogous to those of upload transactions:

= Transport error during transmission of an EBICS request in the data transfer or
acknowledgement phase of the transaction

= Timeout or transport error when receiving an EBICS transaction in the data transfer or
acknowledgement phase of the transaction

© EBICS SC Page: 139
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Loss at the subscriber’s end of order data segments that have already been received

Temporary error in the processing of a received EBICS response that necessitates
renewed transmission.

If one of the above error situations occurs, the customer system selects a suitable recovery
point depending on the number of available order data segments at the subscriber’'s end. If
the selected recovery point is the request for the n™ order data segment, then the next
transaction step initiated by the subscriber is the request for the (n+1)" order data segment
or acknowledgement of the download of all order data segments if n is the last order data
segment. EBICS requests within the framework of the recovery of download transactions do
not differ from the EBICS request of a normal, error-free flow of a download transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown
in Diagram 63. In each case, the recovery takes place without explicit synchronisation
between the customer system and the bank system. The 3" order data segment is
requested three times since the customer system could not receive the corresponding
EBICS response due to a timeout or a transport error. On the second and third request of
the 3 order data segment, the customer system assumes that the recovery point is the
request for the 2" order data segment. The value of the recovery counter is equal to 2 after
the third (and successful) request of the 3™ order data segment, since the last two requests
of the 3" order data segment were evaluated as recovery attempts by the bank system.
The transaction finally fails due to the number of recovery attempts being too high.

If the selected recovery point is not valid from the viewpoint of the bank system, the EBICS
response contains the last possible recovery point of the download transaction in addition to
the technical return code EBICS_TX RECOVERY_SYNC. The valid recovery points of a
download transaction are defined in Chapter 5.4. If, for example, the selected recovery
point is the request for the order data segment with serial number k, the transaction can be
continued with the request for the order data segments with serial numbers I+1, 1+2,
wherein i <= k must hold. If i < k, the i order data segment is requested again, then the
counter for the number of implemented recovery attempts is incremented by one.

Diagram 64 shows the successful flow of a transaction that contains a recovery of the
transaction after an explicit synchronisation between the customer system and the bank
system. Here, the customer system requests the 5" order data segment in one state
without having previously requested the 4" order data segment. The financial institution’s
EBICS response (see Diagram 65) thus contains the recovery point of the transaction,
which in this case is the request of the 3 order data segment. Following this, the customer
system continues with the request of the 4™ order data segment and ends the transaction
after receipt of the last segment 5.

© EBICS SC Page: 140
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Customer system Transport layer Bank system
transaction initialisation |
ok, unique transaction ID = xxx, transfer of data segment 1
€ = = o e e e e e e e e e e e = e e e e e e ==
RecoveryCounter == 0,
recovery points:
initialisation
transfer request for data segment 2 for transaction xxx
« ok, transfer of data segment 2
RecoveryCounter == 0,
recovery points:
initialisation,
) transfer/ segment 2
transfer request for data segment 3 for transaction xxx
Transmission failure, timeout
4_ ____________________
RecoveryCounter == 0,
recovery points:
initialisation,
transfer/ segment 2
1. transfer request retry for data segment 3 for transaction xxx R
Transmission failure, Timeout
R e e e
RecoveryCounter == 1,
recovery points:
initialisation,
transfer/ segment 2
2. transfer request retry for data segment 3 for transaction xxx
« — — — ok.transferof datasegment3 _ _ | _ _ _ _ _ _ _ _ _ _ __________.
RecoveryCounter == 2 ==MAX,
recovery points:
initialisation,
transfer/ segment 2
transfer/ segment 3
transfer request for data segment 4 for transaction xxx R
- Transmission failure, Timeout
RecoveryCounter == 2 == MAX,
recovery points:
initialisation,
transfer/ segment 2,
transfer/ segment 3
1. transfer request retry for data segment 4 for transaction xxx
I »>
e — — — system-related error return code: EBICS_TX_ABORT

Diagram 63: Termination of the recovery of a download transaction due to the maximum
number of recovery attempts being exceeded

© EBICS SC Page: 141
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Customer system Transport layer Bank system
transaction initialisation _
- ok, unique transaction ID = xxx, transfer of data segment 1
RecoveryCounter == 0,
recovery points:
initialisation
transfer request for data segment 2 for transaction xxx
. ok, transfer of data segment 2
RecoveryCounter == 0,
recovery points:
initialisation,
. transfer/ segment 2
transfer request for data segment 3 for transaction xxx
- ok, transfer of data segment 3
RecoveryCounter == 0,
recovery points:
initialisation,
transfer/ segment 2,
transfer/ segment 3
transfer request for data segment 5 (> 4) for transaction xxx R
system-related return code: EBICS_TX_RECOVERY_SYNC,
recovery point: transfer/ data segment 3
R e e e e e i Tt T T e T T i |
RecoveryCounter == 1,
recovery points:
initialisation,
transfer/ segment 2,
transfer/ segment 3
transfer request for data segment 4 for transaction xxx
- ok, transfer pf data segment 4
RecoveryCounter == 1,
recovery points:
initialisation,
transfer/ segment 2,
transfer/ segment 3,
transfer/ segment 4
transfer request for data segment 5 for transaction xxx -
ok transfer of data segment 5 for transaction xxx |
R e
RecoveryCounter == 1,
recovery points:
initialisation,
transfer/ segment 2,
transfer/ segment 3,
transfer/ segment 4,
.) transfer/ segment 5
receipt for transaction xxx (acknow|edgement)
ok
D e e e e e e T T B e e e

Diagram 64: Recovery of a download transaction with explicit synchronisation between
customer system and bank system

© EBICS SC Page: 142
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

xmlns="urn:org:ebics:HOO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics response H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static> <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>
</static>
<mutable>
<TransactionPhase>Transfer</TransactionPhase>
<SegmentNumber lastSegment="false">3</SegmentNumber>
<ReturnCode>061101</ReturnCode>
<ReportText>[EBICS TX RECOVERY SYNC] Synchronisation necessary</ReportText>
</mutable>
</header>
<AuthSignature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-morefrsa-sha256">
</ds:SignatureMethod>
<ds:Reference URI="#xpointer (//*[Qauthenticate="true'])">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256" />
<ds:DigestValue>.. here hashvalue for authentication ..</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>.. here authentication signature ..</ds:SignaturevValue>
</AuthSignature>
<body>
<ReturnCode authenticate="true">000000</ReturnCode>
</body>
</ebicsResponse>

Diagram 65: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

© EBICS SC Page: 143
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

6 Encryption

EBICS provides encryption on two different protocol levels: On the level of the EBICS XML-
based application protocol and on a level between the application and transport level,
namely the TLS level.

6.1 Encryption at TLS level

The use of TLS on the external transmission paths between the customer system and the
bank system ensures maintenance of the confidentiality and integrity of the EBICS
messages on these paths. The cryptographic processes that are used to establish a TLS
session between the customer system and the bank system are described in the Appendix
(Chapter 11.3.1).

6.2 Encryption at application level

The order data of bank-technical orders are fundamentally deemed to be sensitive and are

therefore embedded into EBICS messages in encrypted form. This facilitates maintenance

of their confidentiality on the internal paths of the customer system and the bank system on
which communication is not necessarily based on TLS.

The order data of system-related key management orders is encrypted as soon as the
recipient’s (sufficiently verified) encryption key is available to the sender of the order data.
The order data of INI or HIA orders is thus embedded into the EBICS message in an
unencrypted form, but the order data of HPB, PUB, HCS, or HCA orders is encrypted.

The order data of system-related Distributed Electronic Signature orders is also embedded
in the EBICS message in encrypted form.

Analogous to the order data of bank-technical orders, the electronic signatures of an order,
i.e. the transport signature or the bank-technical ES’s are always encrypted.

Apart from the order data and the ES’s, no further data is encrypted at the application level.

Order data that is to be encrypted and ES’s of an order are initially compressed via ZIP,
then encrypted and finally base64-coded and embedded in the EBICS message. Here,
compression and subsequent encryption of the order data takes place before it is
segmented. The implemented encryption process is a hybrid process: The data is
symmetrically encrypted, the utilised symmetrical key is passed to the recipient of the data
in asymmetrically-encrypted form. Details on the encryption process are given in the
Appendix (Chapter 11.3.2).

In the event of an upload transaction, a random symmetrical key is generated in the
customer system that is used exclusively within the framework of this transaction both for
encryption of the ES’s and for encryption of the order data. This key is encrypted

© EBICS SC Page: 144
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

asymmetrically with the financial institution’s public encryption key and is transmitted by the
customer system to the bank system during the initialisation phase of the transaction.

Analogously, in the case of a download transaction a random symmetrical key is generated
in the bank system that is used for encryption of the order data that is to be downloaded
and for encryption of the bank-technical signature that has been provided by the financial
institution. This key is asymmetrically encrypted and is transmitted by the bank system to
the customer system during the initialisation phase of the transaction. The asymmetrical
encryption takes place with the technical subscriber’s public encryption key if the
transaction’s EBICS messages are sent by a technical subscriber. Otherwise the
asymmetrical encryption takes place with the public encryption key of the non-technical
subscriber, i.e. the submitter of the order.

From EBICS 2.4 on, the customer system has to use the E002-hash value of the public
bank key in a request. This hash value is generated by the customer system according to

the E002 process by means of SHA-256.
The transaction is cancelled and the return code EBICS_INVALID_REQUEST_CONTENT
is returned if EOOL is still used in a request.

© EBICS SC Page: 145
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

7 Segmentation of the order data

7.1 Process description

In Version HOO5 of the EBICS standard, order data that requires more than 1 MB of storage
space in compressed, encrypted and base64-coded form MUST be segmented before
transmission, irrespective of the transfer direction (upload/download).

The following procedure is to be followed with segmentation:

1. The order data is ZIP compressed
2. The compressed order data is encrypted in accordance with Chapter 6.2
3. The compressed, encrypted order data is base64-coded.

In doing this, only the 65 printable characters of the base64 alphabet from RFC
2045 are permitted in EBICS in the resulting coded data block. In particular, so-
called “white-space characters” such as spaces, tabs, carriage returns and line
feeds (“CR/LF”) are not permitted

4, The result is to be verified with regard to the data volume:

4i. If the resulting data volume is below the threshold of 1 MB = 1,048,576 bytes,
the order data can be sent complete as a data segment within one transmission step

4ii. If the resulting data volume exceeds 1,048,576 bytes the data is to be

separated sequentially and in a base64-conformant manner into segments that each
have a maximum of 1,048,576 bytes.

Step 4i ensures that even order data that does not exceed the permitted maximum segment
size of 1 MB when in compressed, encrypted and coded form is handled uniformly within the
framework of segmentation.

The recipient executes the algorithmic computations in reverse order to recovere the original
order data:

1. The data segment that has just been received is appended (concatenated) to
the already-received data segments

2. The complete data block is base64-decoded

3. The results of the base64-decoding are decrypted in accordance with Chapter
6.2

4, The results of the decryption are ZIP expanded to reveal the original order
data.

7.2 Implementation in the EBICS messages

The sender of the order data numbers the data segments that are generated in accordance
with Chapter 7.1 sequentially in ascending order, beginning with 1.

© EBICS SC Page: 146
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The server terminates the connection with the technical error code
EBICS_TX_SEGMENT_NUMBER_EXCEEDED if the client in an upload transaction has
specified the total number of segments that are to be transmitted, as stated in the
initialisation phase, too low in the field ebics/header/static/NumSegments, i.e. if the
following applies to the current transaction step:

ebicsRequest/header/mutable/SegmentNumber =
ebicsRequest/header/static/NumSegments (from the initialisation phase) and
ebicsRequest/header/mutable/SegmentNumber@lastSegment#"true", Or

ebicsRequest/header/mutable/SegmentNumber >
ebicsRequest/header/static/NumSegments (from the initialisation phase).

The server terminates the transaction in a regular manner with the technical return code of
severity level ‘info’ EBICS_TX_SEGMENT_NUMBER_UNDERRUN if the client in an upload
transaction has specified the total number of segments that are to be transmitted, as stated
in the initialisation phase, too high in the field
ebicsRequest/header/static/NumSegments, i.e. if the following applies to the current
transaction step:

ebicsRequest/header/mutable/SegmentNumber <
ebicsRequest/header/static/NumSegments (from the initialisation phase) and
ebicsRequest/header/mutable/SegmentNumberflastSegment="true".

The server terminates the transaction with the technical error code
EBICS_SEGMENT_SIZE EXCEEDED if the client in an upload transaction has exceeded
the permitted segment size of 1 MB in the current transaction step.

In the case of download transactions, it is the responsibility of the customer system to
respond to irregularities regarding the number or size of segments:

If the actual number of transmitted segments up until attribute setting
ebicsRequest/header/mutable/SegmentNumber@lastSegment="true" is lower
than the specification in the initialisation stage on the part of the server, the client SHOULD
nevertheless duly continue the current transaction with the acknowledgement phase.

If the server exceeds the total number of segments postulated in the initialisation phase,
the client CAN nevertheless continue the transaction by requesting further segments.
Alternatively, or in the event of a disproportionately-large deviation between the actual
segment number and the specified humber, the client CAN interrupt the transaction by
sending no further requests.

If the server exceeds the permitted segment size of 1 MB, the client SHOULD terminate
the transaction.

© EBICS SC Page: 147
Status: Final V 3.0.2

8.1

EBICS specification
EBICS detailed concept, Version 3.0.2

Electronic Distributed Signature (EDS)

Support by the bank for the Distributed Electronic Signature is compulsory for EBICS-
conformant implementation, i.e. a bank server MUST support the administrative order types
for the EDS. Information as to whether the financial institution supports the optional EDS
order type “HVT” (Retrieve EDS transaction details) is contained in the bank parameters (see
Chapter 9.2.2, Parameter “DistribSigTransactionDetails”).

Process description

The Distributed Electronic Signature (EDS) allows orders to be authorised by multiple
subscribers, even from different customers, independently of location and time. Here, an
order remains stored in the EDS processing system until via the EDS orders either the
necessary number of signatures with suitable authorisation have been received, a time limit
set by the bank’s computer system has been exceeded or the order is cancelled. Hence the
EDS process is not just an alternative to customer-internal subsequent submission of ES’s
relating to an existing order, it also offers a distributed ES among a number of customers
with comprehensive possibilities for information on the EDS state and the order.

Authorised signatories of a customer can use signature processes deviating from each other
which may support different hash processes resulting in different hash values. In the case of
the EDS process, the hash value of the order data is provided when the administrative order
types HVD and HVZ are executed. This hash value is derived from the signature version
which the subscriber executing HVZ and HVD uses. The hash value is provided with the
signature version used as an attribute.

A complete EDS order process generally proceeds as follows:

The order party initiates the order (e.g. a SEPA credit transfer) by transmitting the
order data in an EBICS transaction with a signature flag (this means that he wants to
sign within EBICS) and the attribute RequestEDS (this means that it is possible to
add possibly missing ESs via EDS). . For the signature, the order party can either
immediately bank-technically sign the order (signature class A, B or E) or can initially
carry out the transmission by means of a transport signature (signature class T).

The bank system analyses the business transaction identifiers (BTF
identifiers) and signatures that have already been submitted, including their class. If
further signatures are necessary for processing of the order, it is stored intermediately
for the EDS process together with its hash value. The bank system extracts the hash
value of the order data from the ES using the signatory’s public signature key.

If another subscriber wants to use the EDS process for this order, they have
possibly already received the data necessary for authorisation — hash value of the
order, BTF identifiers and order number — outside of EBICS (via a third

© EBICS SC Page: 148
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

3i.

3ii.

3iii.

4i.

4ii.

communication path). In this event, the process continues from Point 4. On the other
hand, if they still need the order data they can proceed as follows:

Firstly, they inquire via the administrative order type HVU or HVZ to find out
which orders they are authorised to sign within the framework of EDS. The response
contains, among other things, information on the business transaction (BTF
identifiers), order number, the number of signatures required and already provided
(including a note as to whether their own signature is still required or has already
been provided), on the original order party and on the size of the uncompressed order
data. The HVZ response contains additional information, especially the hash value of
the order data. If HVZ is applied, step 3ii may be skipped.

Next they ascertain via HVD the state of one of these orders, e.g. the SEPA
credit transfer order placed within the framework of the EDS. In addition to the hash
value of the order data that the bank system has extracted from the order signatory’s
ES and an accompanying note, they receive a list of the previous signatories together
with their authorisation class.

The subscriber can download additional order details via HVT: Depending on
the request parameters, they receive either information on the individual order
transactions (account data, amount information, processing date, utilisation data and
other descriptions) or the complete order data.

The subscriber now has all information needed to sign or cancel the original
order:

If they want to add a signature to the original order, they will use HVE. For
this, they sign the hash value of the order data received via HVD or worked out
themselves from the complete order data via HVT. The HVE control data contains the
order parameters for the original order (e.g. the SEPA credit transfer order).

If they want to cancel the original order they would use HVS. As with HVE,
authorisation is confirmed by the bank-technical signature via the hash value of the
order data, but in the case of HVS the signature applies as confirmation of the
cancellation, not confirmation of the order itself. As with HVE, the HVS control data
contains the order parameters of the original order (that is to be cancelled).

Diagram 66 documents the processes when using EDS. The diagram shows the logical
concatenation of the EDS order types wherein pure communications connections (e.g. data
transmission from bank system to customer system on retrieval of EDS details via HVD),
occurrences of errors and the acquisition of information via alternative communication
channels (e.g. order hash value by email from the submitter instead of via HVD) are not
shown for reasons of clarity.

© EBICS SC Page: 149

Status: Final V 3.0.2

8.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Order party/ Credit institute Signer
initiating party

[additional ESs .
required] store incompletely
> » authorised orderin |-~ -><;
[ES-authorisation VEU processing list

complete]

delete order from
EDS processing list

process order

[orders [complete order

i HVT i
y tosion] [suppolrs{ed] data requested] HVT
> ~
v »| (complete
[HVT is not [order details order data)

requested]

supported]

[no orders
to sign] HVT
(order details)

[hash value computed
from order data]

[hash value
from HVD
or HVZ]

[signature of
the order]

[cancellation]

delete order from
EDS processing list

[no signature]

Diagram 66: Flow diagram for EDS

Technical implementation of the EDS

A subscriber initiates EDS processing by submitting an order with an insufficient number
of bank-technical signatures of the necessary authorisation class. The order is submitted in
an EBICS transaction with present signature flag and a present attribute RequestEDS . In all
cases, this order must be submitted with a signature (either with a bank-technical signature
of class “A”, “B” or “E”, or with a transport signature of signature class “T”).

The bank system first verifies the supplied ES(s) and the authorisation of the subscribers
for the order type in question. It then compares the number and signature class of the
supplied ES(s) with the locally-deposited ES requirements for the order type in question. If
signatures are still outstanding, the order is placed in EDS processing together with the ES’s
that have already been provided.

Information on orders that are currently in EDS processing can be retrieved via EDS
administrative order types “HVU” , “HVZ”, “HVD” and “HVT". Necessary parameters to
demarcate the original orders are transmitted via the additional order parameters
HVUOrderParams, HVZOrderParams, HVDOrderParams Or HVTOrderParams, which

© EBICS SC Page: 150
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

”

are part of the control data for these administrative order types. “HVU”, , “HVZ” “HVD” and
“‘HVT” are download transactions wherein the reply information is transparently embedded
into the order data field in the form of XML documents. “Transparent” means: The XML
structures are interpreted in binary and are compressed, encoded and coded before
transmission just like the order data of other order types.

In the case of HVE/HVS, a subscriber can retrieve the necessary data for identification of
the original order (hash value of the order, order type, order number) in the following ways:

HVU & HVD: With HVU, they retrieve the BTF identifiers and order number, with HVD the
hash value of the order. Here, the hash value originates from the ES of the subscriber that
submitted the order.

HVZ as an alternative of HVU & HVD: With HVZ, the subscriber retrieves the BTF
identifiers and order number as well as the hash value of the order. The hash value
originates from the submitter's ES of the order.

HVU & HVT: With HVU, the subscriber retrieves the BTF identifiers and order number as in
the case of ,HVU & HVD". With HVT, they can set the switch
completeOrderData="true" in the request (HVTOrderParams) and thus receive the
complete order file. They can work out the hash value themselves from this.

HVZ & HVT: With HVZ, the subscriber retrieves the BTF identifiers and order number as
well as the hash value of the order as described above. HVT allows him to set the switch
completeOrderData="true" with the request (HVTOrderParams), thus giving him the
opportunity to obtain the complete order file.

Via an alternative communication channel: The subscriber is at liberty to acquire the
information without the help of the EBICS interface. If they already know the BTF identifiers
and the order number, they can dispense with retrieval via HVU. If they also have the
correct hash value for the order, retrieval via HVD, HVT or HVZ respectively can also be
dispensed with.

New ES’s can be assigned to the order via the administrative EDS order type HVE. Here,
identification of the original order takes place via the additional order parameters
HVEOrderParams, Which are components of the control data for an HVE order. The ES that
is to be supplied for the order data of the original order is transmitted during the initialisation
step. HVE contains one or more ES(s) but no order data.

As soon as the required number of ES’s with suitable authorisation has been submitted
for the order type in question, the original order is released from EDS processing and
forwarded for further order processing. In this way, the order no longer appears in the return
list of orders to be signed when “HVU” (or HVZ) is next implemented.

EDS cancellation can be initiated via administrative order type HVS. As with HVE,
identification of the original order takes place via the additional order parameters (here
HVSOrderParams), which are components of the control data for an HVS order. As with
HVE, the authorising ES for the cancellation via order data of the original order is transmitted
in the initialisation step. HVS also contains one or more ES(s) but no order data.

An order cancellation is effective immediately, and always requires one single authorised
signature of class “E”, “A” or “B”. A cancelled order is removed from the EDS processing; it is
not forwarded for further order processing. Furthermore, it is no longer contained in the list of
orders to be signed in the event of a repeated release of “HVU” (or HVZ).

© EBICS SC Page: 151
Status: Final V 3.0.2

8.3

8.3.1

8.3.1.1

EBICS specification
EBICS detailed concept, Version 3.0.2

Detailed description of the administrative EDS order types

This chapter will exclusively cover the differences and additions in comparison with EBICS
standard orders (see Chapter 5). No more process flows will be explained (see Chapter 8.1
and 8.2), instead syntax and semantics for each individual administrative EDS order type
(request and response) will be defined for the relevant elements and attributes of the XML
schema, and these will be explained by way of examples.

Definition of the EDS order elements (EDS order parameters and EDS order data) is given in
the XML schema “ebics_orders_HO005.xsd”. Type definitions are given, in part, in the XML
schema “ebics_types HO005.xsd”. With the textual representations, the relevant passages
from “ebics_orders_H005.xsd” and “ebics_types H005.xsd” are listed in summary.

HVU (download EDS overview) and HVZ (Download EDS overview with
additional information)

A subscriber can use HVU to list the orders for which they are authorised as a signatory. As
a filter criterion, they can restrict the list in “request” to specific (groups of) business
transactions (ServiceFilter, 0..n occurences). In addition to the order designation, the
“response” also contains the size of the order data, signature conditions and information on
the initiating party and the previous signatories (OrderDetails).

Apart from all information of HVU the response message of HVZ also contains data of HVD.
Therefore, HVZ ("Download EDS overview with additional information™) may be compared to
a combination of HVU with 1 to n HVDs.

HVU and HVZ are administrative order types of the type “download”.

HVU request

In the HVU request, the subscriber optionally submits a filter criterion. Only orders whose
BTF identifiers are contained in the submitted filter are returned. If the subscriber does not
submit a restriction, they will receive a list of all BTF identifiers for which they are authorised
as a signatory.

Characteristics of OrderParams (order parameters) for HVYU: HVUOrderParams

© EBICS SC Page: 152
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.1.1.1 XML schema (graphical representation)

HWUOrderParams [Tj—|r(—m—jz|..:
tioinal o rameters | L_’ """"""

2aia = < any #other
_________________ i

Diagram 67: HVUOrderParams

-

8.3.1.1.2 Meaning of the XML elements/attributes
XML element/ Data type # Meaning Example
attribute
HVUOrderParams ebics:HVUOrderParamsType 1 Order parameters for -
(complex) administrative order type (complex)
HVU
ServiceFilter ebics:ServiceType 0..n | Choose all orders which map
with a specific filter of BTF
] elements, for which orders
for this structure refer to available for signature are to
chapter 8.3.6 be retrieved; if not specified,
all orders are retrieved for
which the subscriber is
authorised as a signatory
8.3.1.1.3 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"7?>
<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<!-= [.] -—>
<OrderDetails>
<AdminOrderType>HVU</AdminOrderType>
<HVUOrderParams>
<ServiceFilter>
<ServiceName>SCT</ServiceName>
</ServiceFilter>
</HVUOrderParams>
</OrderDetails>
<!-= [.] -—>
</static>
<l-= [.] =-=>
© EBICS SC Page: 153

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

</header>
<l-= [.] -=>

</ebicsRequest>

8.3.1.2 HVU response

In the HVU response, the subscriber is given information as to the orders for which they are

authorised as signatories.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HVU: HVUResponseOrderData

8.3.1.2.1 XML schema (graphic representation)

-

Diagram 68: HVUResponseOrderData

L- < any #other

inlalglglylylyliel iy

—{ ebicz:0rderDetails EFTE)E‘_ N
. -- ebic=:Signerinfo
1.=

—
ebicz:HVUOrderDetailzsType

ebics:5ervice

= chics:0rderiD

AFel:uics:DrderDataSize |

—| ebics:Signinglnfo

—| ebicz:0riginatorinfo

o
Lo
[

© EBICS SC

Page: 154
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

E] sttributes

| readyTobBe Signed |

[H"U"U SigninglnfoType [le—

NumSigDone

L

[Si gnerinfoType ['L]—(—H-—:EI—

Diagram 70: SignerinfoType (to Signerinfo)

=] attributes

H orp ebics:SignerPermission

| AuthorisationLevel |

© EBICS SC

Page: 155

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

(HUUDriginatorlnfoType I:'L]—(—-H—)EI—

[
fi

Diagram 71: HVUOriginatorinfoType (to Originatorinfo)

8.3.1.2.2 Meaning of the XML elements/attributes
XML element/ Data type # Meaning Example
attribute
HVUResponse» ebics:HVUResponse» 1 XML order data for - (complex)
OrderData OrderDataType administrative order type
(complex) HVU
OrderDetails ebics:HVUOrder» 1... | Order information for - (complex)
DetailsType (complex) administrative order type
HVU
Service ebics:RestrictedServ 1 Kind of business
iceType transaction, identified by
for this structure refer to the service structure,
chapter 8.3.6 submitted for EDS
OrderID ebics:0rderIDType 1 Order number of the “OR01”
(>token, order submitted for EDS
fixLength=4)
OrderDataSize positivelnteger 1 Size of the 123456
uncompressed order
data of the order
submitted for EDS in
bytes
SigningInfo ebics:HVUSigning» 1 Information on the - (complex)
InfoType (complex) signature modalities
SigningInfo» boolean 1 Is the order ready for “true”
@readyToBeSigned signature (true) or
already signed by the
subscriber (false)?
SigningInfo» positiveInteger 1 Total number of ES’s 4
@NumSigRequired required for activation
© EBICS SC Page: 156

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

SigningInfo» nonNegativelnteger 1 Number of ES’s already 2
@numSigDone provided
SignerInfo ebics:SignerInfo» 0... | Information on previous - (complex)
Type (complex) signatories
PartnerID (in ebics:PartnerIDType 1 Customer ID of the “CUSTMO001”
SignerInfo) (P token, signatory
maxLength=35,
pattern="[a-zA-Z0-
9,=1{1,35})
UserID (in ebics:UserIDType 1 Subscriber ID of the “USR100"
SignerInfo) (2token, signatory
maxLength=35,
pattern="[a-zA-Z0-
9,=1{1,35})
Name (in SignerInfo) | ebics:NameType 0..1 | Signatory’s name “John Doe*
(?normalizedString)
Timestamp (in ebics:TimestampType 1 Time stamp of the “2020-11-26T»
SignerInfo) (>dateTime) signature (i.e. 16:30:45.123Z2¢
transmission of the
signature)
Permission - (complex) 1 | Additional authorisation - (complex)
information relating to the
subscriber that acted as
signatory
Permission» ebics:Authorisation» 1 Signature authorisation “A"
@Authorisation» LevelType of the subscriber that
Level (2token, length=1: acted as signatory
"E", "A", "B", "T")
OriginatorInfo ebics:HVUOriginator» 1 Information on the - (complex)
InfoType (complex) initiating party
PartnerID (in ebics:PartnerIDType 1 Customer ID of the “CUSTMO001”
OriginatorInfo) (token, initiating party
maxLength=35,
pattern="[a-zA-Z0-
9,=1{1,35})
UserID (in ebics:UserIDType 1 | Subscriber ID of the “USR300"
OriginatorInfo) (>token, initiating party
maxLength=35,
pattern="[a-zA-Z0-
9,=11{1,35})
Name (in ebics:NameType 0..1 | Name of the initiating “Ophelia
OriginatorInfo) (PnormalizedString) party Originator*
Timestamp (in ebics:TimestampType 1 | Time stamp of the “2020-11-25T»
OriginatorInfo) (>dateTime) submission (i.e. trans- 15:30:45.123Z2¢
mission of the order file)
AdditionalOrderInf | Max255Text 0..1 | Additonal Information e.g. local file
o about the order up to 255 | name
characters (given by the
customer)
© EBICS SC Page: 157

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.1.2.3 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVUResponseOrderData

xmlns="urn:org:ebics:HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics orders HO05.xsd">

<OrderDetails>
<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<O0rderID>OR01</OrderID>
<OrderDataSize>123456</OrderDataSize>
<SigningInfo NumSigRequired="4" readyToBeSigned="true" NumSigDone="2"/>
<SignerInfo>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>
<Name>John Doe</Name>
<Timestamp>2020-11-26T16:30:45.123Z</Timestamp>
<Permission AuthorisationLevel="A"/>
</SignerInfo>
<SignerInfo>
<PartnerID>CUSTM002</PartnerID>
<UserID>USR200</UserID>
<Name>Jackie Smith</Name>
<Timestamp>2020-11-26T17:30:45.123%2</Timestamp>
<Permission AuthorisationLevel="B"/>
</SignerInfo>
<OriginatorInfo>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR300</UserID>
<Name>Ophelia Originator</Name>
<Timestamp>2020-11-25T15:30:45.123Z</Timestamp>
</OriginatorInfo>
</OrderDetails>
</HVUResponseOrderData>

8.3.1.3

HVZ request

In the HVZ request, the subscriber optionally submits a list of BTF identifiers as a filter
criterion. Only orders whose order type is contained in the submitted list are returned. If the
subscriber does not submit an order type list as a restriction, they will receive a list of all
order types for which they are authorised as a signatory.

Characteristics of OrderParams (order parameters) for HVZ: HVUOrderParams

© EBICS SC Page: 158
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.1.3.1

Diagram 72: HVZOrderParams

XML schema (graphical representation)

8.3.1.3.2 Meaning of the XML elements/attributes
XML element/ Data type # Meaning Example
attribute
HVZOrderParams ebics:HVZOrderParamsType 1 Order parameters for -
(complex) administrative order type (complex)
HVZ
ServiceFilter ebics: ServiceType 0..1 | Choose all orders which map
with a specific filter of BTF
for this structure refer to elements, for which orders
chapter 8.3.6 available for signature are to
be retrieved; if not specified,
all orders are retrieved for
which the subscriber is
authorised as a signatory
8.3.1.3.3 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<!-= [.] -—>
<OrderDetails>
<AdminOrderType>HVZ</AdminOrderType>
<HVZOrderParams>
<ServiveFilter>.</ServiceFilter>
</HVZOrderParams>
</OrderDetails>
© EBICS SC Page: 159

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<l-= [.] -=>
</static>
<l-= [.] -—>
</header>
<l-= [..] -—>

</ebicsRequest>

8.3.14 HVZ response

In the HVZ response, the subscriber is given information as to the orders for which they are
authorised as signatories.

HVZResponseOrderData contains the complete information of HYUResponseOrderData and
HVDResponseOrderData with the exception of the element "DisplayFile" containing the file
display. As with HVD, the order's hash value is extracted from the ES of the first signatory of
the order and is recalculated if the subscriber executing HVZ uses a different signature
process. In order to make this evident, the hash value is provided with an attribute containing
the signature process used.
Only for payment orders additional information of the file display is returned if available:

total transaction amount for all logical files

total transaction number for all logical files
° currency (only if identical across all transactions, skip otherwise)

For DTAUS/DTAZV: Ordering party, account number / IBAN and bank code / BIC of the first
transaction of the first logical file
Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVZ: HVZResponseOrderData

© EBICS SC Page: 160
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.14.1

XML-Schema (graphic representation)

Diagram 73: HVZResponseOrderData

=
ebics:HVZOrderDetailsType

B

ebics:OrderlD

ID m

ebics:DataDigest

—|Eebics:0rderData.Ava\Iable |

= cbics:OrderDataSize

—|Eebics:OrderDetaiIsAvaiIabIe |

ebics:Signinglnfo

© EBICS SC

Page: 161
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HVZPaymentOrderDetails Structure =} == -‘:

ebics:TotalOrders |

Diagram 74 HVZPaymentOrderDetailsStructure

[Febics:Accountumber

= sttributes

=] attributes

=
0.2

[Febics:BankCode &

format

[attributes

= ebics:NationalBankCode [

format

8.3.1.4.2 Meaning of the XML elements/attributes
XML element/ Data type # Meaning Example
attribute

HVZResponse» ebics:HVZResponse» 1 XML order data for - (complex)

OrderData OrderDataType administrative order type
(complex) HVZ

OrderDetails ebics:HVUOrder» 1..« | Order information for - (complex)
DetailsType (complex) administrative order type

HVZ

Service ebics:RestrictedServ 1 Kind of business
iceType transaction, identified by
for this structure refer to the service structure,
chapter 8.3.6 submitted for EDS

OrderID ebics:0rderIDType 1 Order number of the “OR01”
(Ptoken, order submitted for EDS
maxLength=4)

DataDigest ebics:DigestType 1 Hash value from the ES | - (base64 data)
(>dsig:Digestvalue» for the signature process
Type used by the subscriber
base64Binary) according to the

© EBICS SC Page: 162

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Request-Element User-
ID

DataDigest»
@SignatureVersion

ebics:Signature»Vers
ionType

(2token, length=4,
pattern="A\d{3}"

Version of the signature
process used by the
subscriber according to
the Request-Element
UserlD

e.g.
,A005"

OrderDataAvailable

boolean

Can the order file be
downloaded in the
original format? (HVT
with
completeOrderData=

true)

true

OrderDataSize

positivelInteger

Size of the
uncompressed order
data of the order
submitted for EDS in
bytes

123456

OrderDetails»
Available

boolean

Can the order details be
downloaded as XML
document
HVTResponseOrderData
? (HVT with
completeOrderData=
false)

true

TotalOrders

nonNegativelInteger

0.1

Total transaction number
for all logical files (from
dispay file).

15

TotalAmount

ebics:AmountValue»
Type

(=2decimal,
totalDigits=24,
fractionDigits=4)

0.1

Total transaction amount
for all logical files (from
dispay file).

129.00

TotalAmount»
@isCredit

boolean

0.1

Flag for differentiation
between credit notes
(isCredit="true")
and debit notes
(isCredit="false").
(optional use; usable if
identical across all
transactions, skip
otherwise).

“false”

Currency

ebics:CurrencyBase»
Type

(2token, length=3,
pattern="[A-Z]{3}")

0.1

Order currency (only if
identical across all
transactions, skip
otherwise).

,USD"

FirstOrderInfo

(complex)

0.1

Order details from
display file for first logical
file.

- (complex)

OrderPartyInfo

normalizedString

0.1

Order party information
(from display file).

LJArnold Smith”

© EBICS SC

Page: 163

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

AccountInfo complex 0..1 - (complex)
- - 1..2 | Information about the -
account number:
AccountNumber and/or
NationalAccountNumber
AccountNumber ebics:AccountNumber» 1 Account number ,12345678“
Type (German format or
(Ptoken, international format =
maxLength=40, IBAN)
pattern="\d{3,10} | ([
A-7]1{2}\d{2} [A-Za-
z0-91{3,30}1")
AccountNumbers» boolean 0..1 | Account number givenin | ,false
@international German format
(international=false) or in
international format
(international=true,
IBAN)?
Default="false"
NationalAccount» ebics:National» 1 Account number in free ,123456789012
Number AccountNumberType format (neither German 3456"
(Ptoken, nor IBAN)
maxLength=40)
NationalAccount» token 1 format type wother®
Number@format
- - 1..2 | Information about Bank -
sort code: BankCode
and/or
NationalBankCode
BankCode ebics:BankCodeType 0..1 | German Format or ,50010060“
(2token, international format (=
maxLength=11, SWIFT-BIC). Note: Element
pattern="\d{8} | ([A- cannot be
z21 {6} [A-20-9]{2} ([A- provided in
z0-91{312)") case of IBAN
Only
BankCode» boolean 0..1 | Bank sort code given in Jfalse”
@international German format
(BankCode»
@international=
"false")orin
international format
(BankCode»
@international="tr
ue", SWIFT-BIC)?
Default="false"
NationalBankCode ebics:National» 1 Bank sort code in free ,123456789012
BankCodeType format (neither German “
(Stoken, format nor SWIFT-BIC)
maxLength=30)
NationalBankCode» token 1 format type ,other”
@format
© EBICS SC Page: 164

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

SigningInfo ebics:HVUSigning» 1 Information on the - (complex)
InfoType (complex) signature modalities
SigningInfo» boolean 1 Is the order ready for “true”
@readyToBeSigned signature (true) or
already signed by the
subscriber (false)?
SigningInfo» positivelnteger 1 Total number of ES’s 4
@NumSigRequired required for activation
SigningInfo» nonNegativeInteger 1 Number of ES’s already 2
@numSigDone provided
SignerInfo ebics:SignerInfox» 0.. | Information on previous - (complex)
Type (complex) signatories
PartnerID (in ebics:PartnerIDType 1 Customer ID of the “CUSTMO001”
SignerInfo) (Dtoken, signatory
maxLength=35,
pattern="[a-zA-Z0-
9,=1{1,35})
UserID (in ebics:UserIDType 1 | Subscriber ID of the “USR100"
SignerInfo) (Ptoken, signatory
maxLength=35,
pattern="[a-zA-Z0-
9,=1{1,35})
Name (in SignerInfo) | ebics:NameType 0..1 | Signatory’s name “John Doe*
(?normalizedString)
Timestamp (in ebics:TimestampType 1 Time stamp of the “2020-11-26T»
SignerInfo) (>dateTime) signature (i.e. 16:30:45.1232"
transmission of the
signature)
Permission - (complex) 1 | Additional authorisation - (complex)
information relating to the
subscriber that acted as
signatory
Permission» ebics:Authorisation» 1 Signature authorisation “A
@Authorisation» LevelType of the subscriber that
Level (2token, length=1: acted as signatory
"E", "A", "B", "T")
OriginatorInfo ebics:HVUOriginator» 1 Information on the - (complex)
InfoType (complex) initiating party
PartnerID (in ebics:PartnerIDType 1 Customer ID of the “CUSTMO002”
OriginatorInfo) (Ptoken, maxLength= initiating party
35, pattern="[a-zA-
z0-9,=1{1,35})
UserID (in ebics:UserIDType 1 Subscriber ID of the “USR300"
OriginatorInfo) (Dtoken, initiating party
maxLength=35,
pattern="[a-zA-Z0-
9,=11{1,35})
Name (in ebics:NameType 0..1 | Name of the initiating “Ophelia
OriginatorInfo) (®normalizedString) party Originator“
Timestamp (in ebics:TimestampType 1 | Time stamp of the “2020-11-25T»

OriginatorInfo) (>dateTime) submission (i.e. trans- 15:30:45.123Z"
mission of the order file)
© EBICS SC Page: 165
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

AdditionalOrderInf | Max255Text 0..1 | Additonal Information e.g. local file
© about the order up to 255 | name
characters (given by the
customer)
8.3.1.4.3 Example XML

8.3.2

<?xml version="1.0" encoding="UTF-8"?>

<HVZResponseOrderData xmlns="urn:org:ebics:H005"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics orders HO05.xsd">
<OrderDetails>

<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<OrderID>OR01</OrderID>
<DataDigest SignatureVersion="A006">MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMIMONTY3ODkwMTI=
</DataDigest>
<OrderDataAvailable>true</OrderDataAvailable>
<OrderDataSize>123456</OrderDataSize>
<OrderDetailsAvailable>true</OrderDetailsAvailable>
<TotalOrders>22</TotalOrders>
<TotalAmount>500.00</TotalAmount>
<Currency>EUR</Currency>
<FirstOrderInfo>
<OrderPartyInfo>Arnold Auftraggeber</OrderPartyInfo>
<AccountInfo>
<AccountNumber international="true">
DE68210501700012345678
</AccountNumber>
<BankCode international="false" Prefix="DE">
21050170
</BankCode>
</AccountInfo>
</FirstOrderInfo>
<SigningInfo NumSigRequired="4" readyToBeSigned="true"
NumSigDone="2" />
<SignerInfo>
<PartnerID>PARTNER1</PartnerID>
<UserID>USER0001</UserID>
<Name>Max Mustermann</Name>
<Timestamp>2020-11-26T16:30:45.123Z</Timestamp>
<Permission AuthorisationLevel="A" />
</SignerInfo>
<SignerInfo>
<PartnerID>PARTNER2</PartnerID>
<UserID>USER0002</UserID>
<Name>Maxime Musterfrau</Name>
<Timestamp>2020-11-26T17:30:45.123Z</Timestamp>
<Permission AuthorisationLevel="B" />
</SignerInfo>
<OriginatorInfo>
<PartnerID>PARTNER1</PartnerID>
<UserID>USER0001</UserID>
<Name>Erich Einreicher</Name>
<Timestamp>2020-11-25T15:30:45.1237Z</Timestamp>
</OriginatorInfo>
</OrderDetails>
</HVZResponseOrderData>

HVD (retrieve EDS state)

With HVD, a subscriber can retrieve the state of an order that is currently in EDS processing
and for which the subscriber is authorised as a signatory. They receive information about the

© EBICS SC Page: 166
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

order in the form of an electronic accompanying note (DisplayFile) and the order hash
value (DataDigest) as well as the previous signatories (SignerInfo). The bank system
has extracted the order’s hash value from the ES of the first signatory of the order or it is
recalculated if the subscriber executing HVD is using a different signature process. The data
of the accompanying note MUST correspond in terms of contents with the order data, the
hash value of which is also delivered.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (signature class E, A or B) for the order on hand and the order is
still in the signature folder. If the authorisation is missing, the transaction has to be cancelled
and the error code EBICS DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is
issued.

¢ In case of some underlying administrative order types / business transactions, detailed
information on a specific order in the EDS processing system cannot be retrieved by
means of the transaction HVT. Whether this is possible for the ongoing order or not, is
signalized in the HVD response by the bank system. Before the execution of HVD, the
bank system verifies whether the order is currently located in the EDS processing system
and, in case of an error, terminates the transaction returning the business related error
code EBICS_ORDERID_UNKNOWN.

HVD is an administrative order type of type “download”.

8.3.2.1 HVD request

In the HVD request, the subscriber transfers the relevant data for identification of the order
for which they want to retrieve the EDS state.

Characteristics of OrderParams (order parameters) for HVD: HVDOrderParams

8.3.2.1.1 XML schema (graphical representation)

;u: ;Ec:3 ;‘ﬂ; |; _____________ _i
| |
| ebics:HVRequestStructure:E—E—:Ei |
| is-_s___-_-_:__-_z Standard request dads BTF Sesvice Parsmeter |

HVDOrderParams ! T |
-;::-:;-'-;:-_:;::._:_E:;E“E?E | E pedes 1D of the selected crder |
g s |
| ey |
- J
Diagram 75: HVDOrderParams
© EBICS SC Page: 167

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.2.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute
HVDOrderParams | ebics:HVDOrderParamsType 1 | Order parameters for | - (complex)
(complex) order type HVD
PartnerID ebics:PartnerIDType 1 Customer ID of the “CUSTMO001”
(2token, maxLength=35, initiating party
pattern="[a-zA-Z20-9,=]{1,35})
Service ebics:RestrictedServiceType 1 Kind of business
for this structure refer to chapter transaction, identified
8.3.6 by the service
structure, submitted
for EDS
OrderID ebics:0rderIDType 1 | Order number of the | “OR01”
(2token, fixLength=4) order submitted for
EDS

8.3.2.1.3 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="HO005" Revision="1">

<header authenticate="true">
<static>
<l=-= [..] ——>
<OrderDetails>
<AdminOrderType>HVD</AdminOrderType>
<HVDOrderParams>
<PartnerID>PARTNER1</PartnerID>
<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<OrderID>OR01</OrderID>
</HVDOrderParams>
</OrderDetails>
<!-= [.] -—>
</static>
<!-= [.] -—>
</header>
<!-= [.] -—>
</ebicsRequest>

8.3.2.2 HVD response

The HVD response contains EDS information relating to the order that the subscriber has
requested in the HVD request. In particular, the hash value of the order data is returned from

© EBICS SC Page: 168
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

the ES of the first signatory, along with the accompanying note. In addition, the information is
contained whether the bank system supports the transaction HVT for the particular order.
The following distinction is made:

e OrderDataAvailable : Download of the complete order file with HVT and
completeOrderData=true possible?

e OrderDetailsAvailable : Download of the edited order details in XML format with
HVT and completeOrderData=false possible?

The HVD response provides the subscriber with all data that they require for
acknowledgement of the order via HVE or cancellation via HVS.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVD: HVDResponseOrderData

© EBICS SC Page: 169
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

8.3.2.2.1 XML schema (graphical representation)

ebics:HVDResponseOrderDataType

=
| ebics:DataDigestType

—| ebics:DataDigest

| 2] attribuites
E‘ Si :

Hash walue of the order
data,

| Version of the algorithrn
uzed For signature creation,

O ———

Accarnpanying
ticket"display file"
[romesponds to the displ

"DFU-aAblkarmmen').

awv

file af the custornar's jourmal
according to the docurnent

—Fel}ics:orderﬂataAuailahle |

the ariginal Format? (HY
cornpleteOrderData=tr

Can the order file be downloadad in

T with
&)

|
|
|
|
|
|
|
I —F ebicz:DisplayFile
|
|
|
|
|
|
|

—Fel:-ics:t)rdernatas

HVDResponseOrderData [}]—'-(—m—ja—

ize |

Order data For arder bype HYD
(responze: receive the status of an
order curvently stored in the
distributed signature processing
unitl,

order data (byte count],

Size of the uncompreszed

Can the order details be
as KL decurnent

Crigital Signature issued
the bark, coveting the hash
walue and the accompanying
tickat,

-~ ebics:Signerinfo
.

1
1
.
' Informnation sbout the
! already existing signers,
'
-
L-aany #fother W
N e oo - -}/
......... -

0. .o

E HYWTResponseOrdarlata? (HYT with

- Chics ot |

downloaded

cornpleteCrderD ata=Falze)

by

Tttt Erwesl

Diagram 76: HVDResponseOrderData

8.3.2.2.2 Meaning of the XML elements/attributes

XML element/ attribute Data type Meaning Example
HVDResponseOrderData ebics:HVDResponse 1 XML order data for order -
©EBICS SC Page: 170

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

» type HVD (complex)
OrderDataType
(complex)
DataDigest ebics:DigestType 1 Hash value of the order for | - (base64
(Pdsig:Digestvalu the signature process used | data)
e» by the subscriber according
Type , to the Request-Element
“base64Binary) UserlD
DataDigest» ebics:Signature»V Version for the signature e.g.
@SignatureVersion ersionType process used by the ,A006"
(>token, subscriber according to the
length=d, Request-Element UserlD
pattern="A\d{3}"

DisplayFile base64Binary 1 Accompanying - (baseb4
note/“display file* for data)
submitted order

OrderDataAvailable boolean 1 Can the order file be true
downloaded in the original
format? (HVT with
completeOrderData=tr
ue)

OrderDataSize positivelInteger 1 Size of the uncompressed 1280
order data (byte count)

OrderDetailsAvailable boolean 1 Can the order details be true
downloaded as XML
document
HVTResponseOrderData?

(HVT with
completeOrderData=fa
1se)

BankSignature ebics:SignatureTy 0 ES of the financial - (base64

pe institution via hash value data)
(Pbase64Binary) and accompanying note,
planned feature

SignerInfo ebics:SignerInfo» 0.. | Information on previous -

Type (complex) signatories (complex)

For the remaining XML elements and attributes: See administrative order type HVU (Chapter
8.3.1.2).

8.3.2.2.3 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVDResponseOrderData

xmlns="urn:org:ebics:HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_orders HO05.xsd">

<DataDigest SignatureVersion="A006">
MTIzNDU2Nzg5MDEyMzQ1Njc40TAxMiMONTY30DkwMTI=</DataDigest>

<DisplayFile>..</DisplayFile>
<OrderDataAvailable>true</OrderDataAvailable>
<OrderDataSize>1280</OrderDataSize>
<OrderDetailsAvailable>true</OrderDetailsAvailable>

© EBICS SC Page: 171
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<SignerInfo>
<PartnerID>CUSTMO001</PartnerID>
<UserID>USR100</UserID>
<Name>John Doe</Name>
<Timestamp>2005-01-31T16:30:45.1232</Timestamp>
<Permission AuthorisationLevel="A"/>
</SignerInfo>
<SignerInfo>
<PartnerID>CUSTM002</PartnerID>
<UserID>USR200</UserID>
<Name>Jackie Smith</Name>
<Timestamp>2005-01-31T17:30:45.1237Z</Timestamp>
<Permission AuthorisationLevel="B"/>
</SignerInfo>
</HVDResponseOrderData>

8.3.3 HVT (retrieve EDS transaction details)

HVT provides the subscriber with detailed information about an order from EDS processing
for which the subscriber is authorised as a signatory. Depending on the request
(orderFlags@completeOrderData), they either receive the complete order file or
account details, implementation deadline, amounts and other descriptions (OrderInfo).

The subscriber can transmit other filter criteria (e.g. for selection of individual orders within an
overall order) via request in the generic key value structure (Parameter).

In the case of some administrative order types / business transactions, it is not possible to
retrieve detailed information by means of OrderFlags@completeOrderData="false".
In this case, the bank system returns the business related error code
EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE. With
OrderDataAvailable and OrderDetailsAvailable in the HVD response, the bank
system signals if an HVT transaction for a specific order within the EDS administration can
be executed.

Before the execution of HVT, the bank system verifies whether the order is currently located
in the EDS processing system and, in case of an error, terminates the transaction returning
the business related error code EBICS _ORDERID _UNKNOWN.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (signature class E, A or B) for the order on hand and the order is
still in the signature folder. If the authorisation is missing, the transaction has to be cancelled
and the error code EBICS_DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is
issued.

HVT is an administrative order type of the type “download”.

© EBICS SC Page: 172
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.3.1 HVT request

In the HVT request, the subscriber specifies the order for which they want to retrieve the
EDS transaction details. In addition, they decide whether they want to have order details
(completeOrderData="false") or the complete order file
(completeOrderData="true") as a response by setting the OrderFlag

completeOrderData.

If completeOrderData="false", the customer system may limit the number of order
details that the bank system is to provide. By means of the attribute fetchLimit for the
element OrderFlags the maximum number of order details to be transmitted can be
defined (a proposal for that is fetchLimit=100). If fetchLimit=0, all order details of an
order are requested.

By means of the attribute fetchOffset the customer system is able to define an offset
position in the original order file. From this position onwards the order details are returned. If
fetchOffset=0, order details are requested from the starting point of the order file.

If the value for fetchOffset is higher than the total number of order details, the business
related error EBICS_INVALID_ORDER_PARAMS is returned.

The generic key value structure (Parameter) is available for further filter criteria.

Characteristics of OrderParams (order parameters) for HVT: HVTOrderParams

© EBICS SC Page: 173
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.3.1.1 XML schema (graphical representation)

Fr———_—
ebics:HVTOrderParamsType _|

—(ebics: HWVRequestStructu re:EI—E—)Eli

L T L
i

3 attributes

| completeQrderData |

|
|
|
|
|
|
|
|
| —|: of the selected
|
|
|
|
|
|
|
|
|

HUTOrderParams [T‘]—I-@E—
b ol o — —| ebics:OrderFlags [TL_I—

fetchOffzet

1] .
:-{pebies:Parameter]
n Sbics:Paramete:

Diagram 77: HVTOrderParams

© EBICS SC Page: 174
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.3.1.2 Meaning of the XML elements/attributes

XML element/
attribute

Data type

Meaning

Example

HVTOrderParam
s

ebics:HVTOrderParams»
Type (complex)

Order parameters for
order type HVT

- (complex)

PartnerID

ebics:PartnerIDType
(2token, maxLength=35,
pattern="[a-zA-Z20-9,=]1{1,35})

Customer ID of the
initiating party

“CUSTMO001”

Service

ebics:RestrictedServiceType
for this structure refer to chapter
8.3.6

Kind of business
transaction, identified by
the service structure

OrderID

ebics:0rderIDType
(token, fixLength=4)

Order number of the
order submitted for EDS

“OR071”

OrderFlags

ebics:HVIOrderFlags»
Type (complex)

Specific “switch” for HVT
orders

- (complex)

OrderFlags»
@completex»
OrderData

boolean

Should the transaction
details be transmitted as
individual order detailed
information
(@completeOrderDat
a=

"false")orasa
complete order file
(QcompleteOrderDat
a=

"true")? (Proposal for
default="false")

“false”

OrderFlags»
@fetchLimit

nonNegativelnteger

Maximum number of
order details to be
transmitted if
@completeOrderData

"false",

"0“ for unlimited number
of details

(Proposal for
default="100%)

10

OrderFlags»
@fetchOffset

nonNegativeInteger

Offset position in the
orginal order file which
marks the starting point
for the transaction
details to be transmitted,;
applies to the sequential
number of a particular
order if
completeOrderData=fals
e.

(Proposal for
default="0")

20

© EBICS SC

Page: 175
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Parameter Reference to global element (complex) 0.. | Structure for generic key | - (complex)
value parameters with
optional type
specification

8.3.3.1.3 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?2>

<ebicsRequest

xmlns="urn:org:ebics:HOO5"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics request H005.xsd"
Version="H005" Revision="1">

<header authenticate="true">
<static>
<l-= [.] -—>
<OrderDetails>
<AdminOrderType>HVT</AdminOrderType>
<HVTOrderParams>
<PartnerID>PARTNERI</PartnerID>
<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<OrderID>OR01</OrderID>
<OrderFlags completeOrderData="false" fetchLimit="50" fetchOffset="0"/>
</HVTOrderParams>
</OrderDetails>
<l=-= [..] ——>
</static>
<l=-= [..] -——>
</header>
<l=-= [..] ——>

</ebicsRequest>

8.3.3.2 HVT response

Depending on the selection of the attribute completeOrderData at the element
OrderFlags the HVT response contains two different formats for the order specified in the
HVT request.

If the flag completeOrderData=true is set, the customer system requests the download
of order data in the original format. This download is a standard download without any
additional embedding of order data into an XML document, i.e. the order data are transmitted
to the customer system after having been compressed, encrypted and, if required,
segmented.

If the flag completeOrderData=false is set, the customer system requests the download
of order details in the edited XML format. This comprises an XML document with the root
element HVTResponseOrderData thatis transmitted to the customer system after having
been compressed, encrypted and, if required, segmented. In this case, the response stores
the total number of order details of the original order file in the element NumOrderInfos.

© EBICS SC Page: 176
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HVT: HVTResponseOrderData

If a subscriber executes HVT, although the bank does not support HVT for the order on
hand, the transaction has to be cancelled and the return code
EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE is to be issued.

8.3.3.2.1 XML schema (graphical representation)

I_ - - - - - - — — —
| ebics:HVTResponseOrderDataType

= ebics:HumOrderinfos |

Total nurnber of order infos For
the arder,

1..m
Particular order content
inFarrnation requasted Far
display matters,

Order data For order bype HWT
[response: receive transaction
details of an order currently stored
in the distrbuted signature
processing unit),

[kY
- -4 any Fother 1

------------------ -
o

|

|

|

ebics:Orderinfo |

| |
|

|

|

HVTResponseOrderData EI—|[(
|
|
|

|_ 0.m |

Diagram 78: HVTResponseOrderData

© EBICS SC Page: 177
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HVTOrderinfoType [==

= cbics:Amount B

Diagram 79: HVTOrderinfoType (to Orderinfo)

© EBICS SC

Page: 178
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HVTAccountinfoType [|

ebics:AttributedAccountType (extensio

[E attributes

\ Currency

E--Descnptlo

|
Lll

[E attributes

E-Description [

= ebics:Accountiumber [

LFebics:NationalAccountiumber

Fo

[E attributes

= cbics:BankCode [

! Prefix

L--Zebics:AccountHolder E—

[cbics:NationalBankCode [}

Diagram 80: HVTAccountinfoType (to Accountinfo)

© EBICS SC

Page: 179
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.3.2.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute

NumOrderInfos ebics:NumOrderInfo Total number of particular 42
sType 1 orders in the original file

OrderInfo ebics:HVTOrderInfo | 1. Individual order information | - (complex)
(complex)

MsgName ebics: 0..1 | message names starting “pain.001”,
MessageNameStringT with a BA code (ISO) or MT | “mt103”
ype (FIN) or string to be Message names
(S'm'?'e)_ base: evaluated (issued by
:r?isrfﬂgtrll;?h vaejﬁé:"l" In the HVT_responsg mark_e_ts, _

A MsgName IS an optlonal Spec|f|ed n
maxLength value="10 .
= informaton “scope”) are
pattern = [a-2\.0-9]
also allowed

MsgName@version | ebics:NumString 0..1 | Used ISO version of “03”
(simple) message, ignored if no 1ISO
restriction base: message name
minLength value="2"
maxLength value="2"
pattern = [0-9]

MsgName@variant ebics:NumString 0..1 | Evaluated together with “001”
(simple) <MsgName>, ignored if no
restriction base: ISO message name
minLength value="3"
maxLength value="3"
pattern = [0-9]

MsgName@format ebics:CodeString 0..1 | Evaluated together with ~XML®, ,ASN1Y,
(simple) <MsgName>, admissible ~JSON*, ,PDF
restriction base: for each kind of message
minLength value="1" name, but only to be used if
maxLength value="4" it is not the standard format
pattern = [A-Z0-9] for the used message

standard (especially non-
XML for 1ISO 20022).

AccountInfo ebics:HVTAccount» 2..3 | Account-related detailed - (complex)

InfoType (complex) information on the
individual order (order
party, recipient, opt.
initiating party)

AccountInfo» ebics:CurrencyBase 0..1 | Currency code of the “EUR”

@Currency » account in accordance with
Type ISO 4217; default = “EUR”

(2token, length=3,

pattern="[A-

Z1{3}")

AccountInfo» ebics:Account» 0..1 | Textual description of the “Savings”

@Description DescriptionType account
(®normalizedString

© EBICS SC Page: 180

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ExecutionDate date 0..1 | Implementation date of the | 2005-01-31
individual order in
accordance with 1ISO 8601

Amount ebics:AmountValue» 1 Amount of the individual 1234.567

Type order

(=2decimal,

totalDigits=24,

fractionDigits=4)
Amount» ebics:CurrencyBase 0..1 | Currency code of the “EUR”
@Currency » individual order amount in

Type accordance with 1SO 4217

(2token, length=3,

pattern="[A-

Z1{31™M)

Amount» boolean 0..1 | Flag for differentiation “false”

@isCredit between credit note
(isCredit="true") and
debit note
(isCredit="false")

Description string 0..4 | Text fields for further “Account no.
description of the order 2345¢
transaction (purpose, order
details, comment)

Description» token: "Purpose", 1 Type of description: “Purpose”

€Type "Details™, ,Purpose“=reason for

"Comment™) payment, ,Details“=order
details,
~comment‘=comment

- - 1..2 | Information on the account
number: AccountNumber
and/or
NationalAccountNumber

AccountNumber ebics:AccountNumbe 1 Account number, either in ,12345678

r» Type national (= German) or
(Stoken, international format (IBAN)
maxLength=40,

pattern="\d{3,10}|

([A-Z]{2}\d{2} [A-

za-z0-91{3,30}")

AccountNumbers ebics:AccountNumbe 1 Role of the account within “Originator®

@Role r» RoleType the payment transaction:

(>token: “Originator’=account of the
"Originator™", ordering party,
"Recipient™, “Recipient’=account of the
"Charges", recipient,

"Other™) “Charges”=account for
charges, “Other”= other
role (see
AccountNumber»
@Description)

AccountNumber» normalizedString 0..1 | Textual description of the “Nostro*

@Description role of the account within

© EBICS SC Page: 181

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

the payment transaction if
AccountNumber@Role=

"Other" is selected.

AccountNumber» boolean 0..1 | Isthe account number “false”
@international specified in national =
German
(AccountNumber»
@international="fals
e™) or in international =
IBAN format
(AccountNumber»
@international="true
")? Default="false"
NationalAccountN 1 Account number in free »123456789012
umber format (for national account | 3456"
numbers that correspond to
neither German nor
international standards)
NationalAccountN | ebics:AccountNumbe 1 Role of the account within ,Originator®
umber» r» RoleType the transaction:
€Role (Ftoken: “Originator’=account of the
"Originator®, ordering party,
"Recipient", « L
"Charges", Re.C|.p|ent =account of the
"Other") recipient,
“Charges”=account for
charges, “Other’= other
role (see
AccountNumber»
@Description)
NationalAccountN | normalizedString 0..1 | Textual description of the ,Nostro*
umber» account within the
@Description transaction if
AccountNumber@Role=
"Other" is selected
National» token 1 Description of the account | ,other®
AccountNumber» number's format
@format
- - 0..2 | Information on the bank -
code: BankCode and/or
NationalBankCode
BankCode ebics:BankCodeType 0..1 | Bank code, either in ,50010060“
(>token, national (= German) or
maxLength=11, international format
pattern="\d{8} | ([A (SWIFT)
-721{6} [A-20-
91{2} ([A-Z0-
91{3n)"
BankCode@Role ebics:BankCodeRole 1 Role of the financial “Originator®
> institution within the
Type payment transaction:
(Ftoken: ,Originator’=ordering bank,
"Originator", .. » L
.Recipient’=receiving bank,
© EBICS SC Page: 182
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

"Recipient",
"Correspondent",
"Other")

,Correspondent’=
correspondent bank,
,Other“=ather role (see
BankCode@Description)

BankCode» normalizedString 0..1 | Textual description of the “Clearing*
@Description role of the financial
institution within the
payment transaction, if
BankCode@Role="Other
" is selected
BankCode» boolean 0..1 | Isthe bank code specified “false”
@Ginternational in national = German
(BankCode»
@international=
"false™) orinternational =
SWIFT format (BankCode»
@international="true
")? Default="false"
BankCode@Prefix token, maxLength=2 0.1 National prefix for bank “DE"
codes
NationalBank» ebics:National» 1 Bank code in free format »,123456789012
Code BankCodeType (neither German format nor | “
(Stoken, SWIFT-BIC)
maxLength=30)
NationalBank» ebics:BankCodeRole 1 Role of the financial ,Originator®
Code€Role » institution within the
Type transaction:
(Ftoken: ,Originator’=ordering bank,
"Originator", .. » L
"Recipient", .Recipient’=receiving bank,
"Correspondent™, ,correspondent”=correspon
"Other") dent bank,
,Other“=other role (see
BankCode@Description)
BankCode» normalizedString 0..1 | Textual description of the ,Clearing*
@Description role the financial institution
plays within the transaction,
if
BankCode@Role="Other
" is chosen
NationalBank» token 1 Format type “other”
Code@format
AccountHolder ebics:AccountHolde 0..1 | Name of the account holder | “John Doe*
r»
Type
(®normalizedString
)
AccountHolder» ebics:AccountHolde 0..1 | Role of the account holder | “Originator®
@Role r» RoleType within the payment
(>token: transaction:
"Originator®, ,Originator“=ordering party,
"Recipient®, .Recipient‘=recipient,
"Presenter",
© EBICS SC Page: 183

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

"Other") ~Presenter‘=submitting
party of the order,
,Other“=ather role (see

AccountHolder»

@Description)
AccountHolder» normalizedString 0..1 | Textual description of the “Trustee”
@Description role of the account holder

within the payment
transaction if
AccountHolder@Role=
"Other" is selected.

8.3.3.2.3 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVTResponseOrderData

xmlns="urn:org:ebics:HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics orders H005.xsd">

<NumOrderInfos>42</NumOrderInfos>
<OrderInfo>
<AccountInfo Currency="EUR">
<AccountNumber Role="Originator" international="false">1234567890</AccountNumber>
<BankCode Role="Originator" international="false" Prefix="DE">50010060</BankCode>
<AccountHolder Role="Originator">Ophelia Originator</AccountHolder>
</AccountInfo>
<AccountInfo Currency="EUR">
<AccountNumber Role="Recipient" international="false">1122334455</AccountNumber>
<BankCode Role="Recipient" international="false">50070010</BankCode>
<AccountHolder Role="Recipient">Ray Recipient</AccountHolder>
</AccountInfo>
<ExecutionDate>2005-01-31</ExecutionDate>
<Amount isCredit="true" Currency="EUR">500.00</Amount>
<Description Type="Purpose">Test transer</Description>
</OrderInfo>
</HVTResponseOrderData>

8.3.4 HVE (add electronic signhature)

With HVE, the subscriber adds a further bank-technical signature for authorisation to an
order from EDS processing.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (not signature class T) for the referenced order. If the authorisation
is missing, the transaction has to be cancelled and the existing return code
EBICS_AUTHORISATION_ORDER_IDENTIFIER_FAILED is issued.

Before HVE is executed, the bank system verifies whether the order is currently located in
the EDS processing system and terminates the transaction in case of an error returning the
business related error code EBICS_ORDERID_UNKNOWN.

© EBICS SC Page: 184
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HVE is an administrative order type of type “upload”. Only the ES is transmitted via the hash
value of the order from EDS processing (no order data, no ES for the administrative order
type HVE itself) whereas only the hash value of the EDS processing is signed.

8.3.4.1 HVE request

With the HVE request, the subscriber specifies the order to which they want to add a bank-
technical signature, and supplies this signature in the same request in the XML body element
ebicsRequest/body/DataTransfer/SignatureData in compressed, encrypted and
base64-coded form. An HVE request does not contain any order data, i.e. the XML body
element ebicsRequest/body/DataTransfer/OrderData remains unfilled.

Since there is no data digest of order data the mandatory element
ebicsRequest/body/DataTransfer/DataDigest

hast to be delivered without content (empty tag) in the HVE request.

In order to provide the bank-technical signature, the subscriber needs either the hash value
of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via
HVT with completeOrderData="true").

Characteristics of OrderParams (order parameters) for HVE: HVEOrderParams

8.3.4.1.1 XML schema (graphical representation)

cbicsHVEOrderParamsype _i
| |
| besdeasdarder |
| |
HVEOrderParams |
| EE'E | ----- D 5 |
e |
T 3 |
| I
Diagram 81: HVEOrderParams
8.3.4.1.2 Meaning of the XML elements/attributes
XML element/ Data type # Meaning Example
attribute
© EBICS SC Page: 185

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

HVEOrderParams ebics:HVEOrderParamsType 1 Order parameters for - (complex)
(complex) order type HVE

PartnerID ebics:PartnerIDType 1 Customer ID of the “PARTNER1”
(2token, maxLength=35, initiating party
pattern="[a-zA-Z0-
9,=1{1,35})

Service ebics:RestrictedServiceT 1 Kind of business
ype transaction, identified by
for this structure refer to the service structure
chapter 8.3.6

OrderID ebics:0rderIDType 1 Order number of the “OR01”
(token, fixLength=4) order in EDS

processing

8.3.4.1.3 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"7?>

<ebicsRequest

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics request H005.xsd"
Version="HO005" Revision="1">

<header authenticate="true">

<static>
<l=-= [.] -—>
<OrderDetails>

<AdminOrderType>HVE</AdminOrderType>
<OrderID>HO04</OrderID>
<HVEOrderParams>
<PartnerID>CUSTMO001</PartnerID>
<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<OrderID>0OR01</OrderID>
</HVEOrderParams>
</OrderDetails>
<l=-= [..] ——>
</static>
<l=-= [..] -——>
</header>
<l=-= [..] -——>
</ebicsRequest>

8.3.4.2 HVE response

The HVE response does not contain any EDS-specific data.

8.3.5 HVS (Cancellation of orders in the EDS)

The subscriber uses HVS to permanently cancel an existing order from EDS processing.

© EBICS SC

Page: 186

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Before HVS is executed, the bank system verifies whether the order is currently located in
the EDS processing system and terminates the transaction in case of an error returning the
business related error code EBICS_ORDERID_UNKNOWN.

HVS is an administrative order type of type “upload”. For cancellation authorisation, the ES is
transmitted via the hash value of the order that is to be cancelled (no order data, no ES for
the administrative order type HVS itself).

8.3.5.1 HVSrequest

The subscriber uses the HVS request to specify the order that is to be cancelled and delivers
the bank-technical signature that is necessary for the cancellation via the hash value of the
order data.

The bank system has to verify whether the subscriber possesses a bank-technical
authorisation of signature (not signature class T) for the referenced order. If the authorisation
is missing, the transaction will be cancelled and the existing return code
EBICS_AUTHORISATION_ORDER_IDENTIFIER_FAILED is issued.

The signature is transported in compressed, encrypted and base64-coded form in the XML
body element ebicsRequest/body/DataTransfer/SignatureData . The order
cancellation is permanent, and always requires one single authorised signature of class “E”,
“A” or “B”'

In order to provide the bank-technical signature, the subscriber needs either the hash value
of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via
HVT with completeOrderData="true").

An HVS request does not contain order data (similar to HVE request), i.e. the XML body
element ebicsRequest/body/DataTransfer/OrderData remains unfilled.

Therefore there is no order data digest - the mandatory element
ebicsRequest/body/DataTransfer/DataDigest must therefore be delivered without
content (empty tag) in the HVS request.

Characteristics of OrderParams for HVS: HVSOrderParams

© EBICS SC Page: 187
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

8.3.5.1.1 XML schema (graphic representation)

ebics:HV S50rderParamsType

ebics:HVReguestStructure [

a
L

HV 50rderParams

Diagram 82: HVSOrderParams

8.3.5.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute
HVSOrderParams ebics:HVSOrderParamsType 1 | Order parameters for - (complex)
(complex) order type HVS
PartnerID ebics:PartnerIDType 1 | Customer ID of the “CUSTMO001”
(>token, maxLength=35, initiating party.
pattern="[a-zA-Z0-
9,=1{1,35})
Service ebics:RestrictedServiceType 1 Kind of business
for this structure refer to chapter transaction, identified
8.3.6 by the service
structure
OrderID ebics:0rderIDType 1 | Order number of the “OR01”
(>token, fixLength=4) order that is to be
cancelled in EDS
processing
8.3.5.1.3 Example XML (abridged)
<?xml version="1.0" encoding="UTF-8"?>
<ebicsRequest
xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:ebics:H005 ebics_request H005.xsd"
Version="H005" Revision="1">
<header authenticate="true">
<static>
<!-= [.] -—>
<OrderDetails>
<AdminOrderType>HVS</AdminOrderType>
<O0rderID>HO05</OrderID>
<HVSOrderParams>
<PartnerID>CUST001</PartnerID>
© EBICS SC Page: 188

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<Service>
<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>
<OrderID>OR01</OrderID>
</HVSOrderParams>
</OrderDetails>
<l-= [..] -—>
</static>
<l=-= [.] -—>
</header>
<l=-= [..] -—>
</ebicsRequest>

8.3.5.2 HVSresponse
The HVS response does not contain any EDS-specific data.

8.3.6 Used Service Structures (restricted and not restricted)

The service structure (of type RestrictedServiceType) with optional and mandatory
elements is used for nearly all upload and download requests where BTF information is
needed. Only for the HVU and HVZ request, however, ALL elements in the structure have to
be optional (type of structure is ServiceType). Hence the user can request a list of orders
which map with a specific filter of BTF elements. If the structure is not specified, all orders
are retrieved for which the subscriber is authorised as a signatory.

© EBICS SC Page: 189
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

+ ()
I"I'-{_ a

field "description -::5
DCT, XCT, SDD, DDD,

-——————
| ebicz:MessageType _|

B attributes |

Diagram 83: non-restricted BTF service structure only for HVU and HVZ request

For all other requests and all responses including description about the business transaction
format (BTF) the standard restricted service structure is used:

© EBICS SC Page: 190
Status: Final V 3.0.2

EBICS s

pecification

EBICS detailed concept, Version 3.0.2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|XE:E

ebics:Restricted Service Type

Diagram 84: “standard” BTF service structure for all other cases

1% .1 .
©.n

[Qo

| L ! ' version !
L = ehicz:MsgName —-L !

| — |

0 [

; 022
| .

—_—
ebics:MessageType _l

= attributes

.
' variant

For the meaning of the element/attributes please refer to chapter 5.5.1.1.3.

© EBICS SC

Page: 191
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9 “Other” administrative EBICS order types

The following sections contain descriptions of the following order types:
= HAA (download retrievable services / BTF)

= HPD (download bank parameter)

= HKD (download customer’s customer and subscriber information)

= HTD (download subscriber’s customer and subscriber information)
HEV (download supported EBICS versions)Information about the support on the part of the
bank (mandatory, optional) see chapter 13.

9.1 HAA (download retrievable business transaction formats BTF)

With HAA, the subscriber may retrieve all kinds of business transaction formats for which
updated customer data are ready for download in the bank system.

HAA is an administrative order type of type “download”.

9.1.1 HAA request

The HAA request does not contain specific data that goes beyond that named in the general
transaction description (see Chapter 5.6.1.1).

9.1.2 HAA response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HAA: HAAResponseOrderData

9.1.2.1.1 XML schema (graphic representation)

| ebics:HAAResponseOrderDataType 1

| e cbics Service]
: ________________________ e =

|

0,.m |
e
R
|

|

| .
HAAResponseOrderData [Tj—r(*:E"i _ services which ars

e

ne HAA | - any ##other)

Diagram 85: HAAResponseOrderData

© EBICS SC Page: 192
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9.1.2.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute
HAAResponse» ebics:HAAResponse» 1 Order data for - (complex)
OrderData OrderDataType (complex) administrative
order type HAA

Service ebics:RestrictedServiceTy 0.. Kind of business

pe transaction,

for this structure refer to identified by the

chapter 8.3.6 service structure

9.2 HPD (download bank parameters)

With HPD, the subscriber can receive information relating to the financial institution’s specific
access (AccessParams) and protocol parameters (ProtocolParams).

The access parameters include:

URL: URL or IP address for electronic access to the financial institution. The optional
attribute valid from specifies the commencement of validity (timestamp) of the
specification

Institute: Designation of the financial institution

HostID (optional): EBICS host ID of the bank system.

In the case of the protocol parameters, the following information is transmitted:

Version: Permitted versions (listed in each case) for EBICS protocol (Protocol),
identification and authentication (Authentication), encryption (Encryption) and
signature (Signature)

Recovery (optional): Support of transaction recovery of (@supported)

PrevValidation (optional): Support of preliminary verification (@supported). If this
parameter is set, the financial institution merely ensures that the subscriber can transmit
data to the financial institution within the framework of preliminary verification. However,
the financial institution is not obliged to comprehensively verify this data.

ClientDataDownload (optional): Support of administrative order types HKD (download
customer data) and HTD (download subscriber data) (@supported). See Chapter 9.3
(HKD) and 9.4 (HTD)

DownloadableOrderData (optional): Support of administrative order type HAA
(download retrievable services / BTF) (@supported). See Chapter 9.1 for details.

The following standard procedure is defined for all optional elements of the protocol
parameters — insofar as not explicitly stated otherwise:

© EBICS SC Page: 193

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= If the parameter is missing, the subscriber MUST evaluate this as meaning that the
corresponding functionality is not supported, i.e. the result corresponds to
Parameter@supported="false"

= |f the parameter is specified, but the attribute is missing, the subscriber MUST evaluate
this as support of the corresponding functionality, i.e. the result corresponds to
Parameter@supported="true”.

This specification simplifies the inter-operability of customer product and bank system: On
the one hand, it is ensured that a financial institution that does not support a function does
not also have to explicitly state that it is “not supported” in the bank parameters. On the other
hand, it is assumed that if a functionality is named then it is also supported, which means
that in this case the @supported flag can be dispensed with.

HPD is an administrative order type of type “download”.

9.2.1 HPD request

The HPD request does not contain specific data that goes beyond that named in the general
transaction description.

9.2.2 HPD response

The HPD response contains the bank parameters, divided into access parameters
(AccessParams) and protocol parameters (ProtocolParams).

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HPD: HPDResponseOrderData

9.2.2.1.1 XML schema (graphic representation)

| ebics:HPDResponse0OrderDataType |
| AccessParams |
HPDRezponselrderData E}|{_..._ EBICS so0ess parameters |
I. = ":'E:';e_'z'._.:e HPD | |
- | :f'E“-:'.:' :E'E': M ‘the2 |

Diagram 86: HPDResponseOrderData

© EBICS SC Page: 194
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

[HPDADCESSPETEFHST‘H’DE |:'L:|_(_..._ [=]

[
i}

= +-4-HostID

Diagram 87: HPDAccessParamsType (to AccessParams)

B attributes

© EBICS SC

Page: 195
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ebicz:Version

] sttributes

B orp ebics:0ptSupportFlag

Ea“;. #httarg etHamespacej

(HPDProtocoIParamsTyrpe E]—E:EI— optional support flag, defauk = wue,

--E ebics:ClientDataDownload E]— ------------

BT - i supported !
r-+4 ebics:DownloadableOrderData [| 'sosnsmnnnnns ;

. =] attributes
L

-{any ##other i
"""" 0=
Diagram 88: HPDProtocolParamsType (to ProtocolParams)
©EBICS SC Page: 196

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

—|EAuth entication

[H PDVersionType E]—(—-u—jEl——'E Encryption

L pEDrAFLsSYeson | SUpporel Werskons o

Diagram 89: HPDVersionType (to Version)

9.2.2.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute
HPDResponse» ebics:HPDResponse» 1 Order data for - (complex)
OrderData OrderDataType (complex) administrative order type
HPD
AccessParams ebics:HPDAccessParams» 1 Access parameters - (complex)
Type (complex)
ProtocolParams | ebics:HPDProtocol» 1 Protocol parameters - (complex)
ParamsType (complex)
URL anyURI 1.. | Institute-specific IP address | “www.the-
/ URL bank.de”
URL@valid_from | ebics:TimestampType 0..1 | Commencement of validity | “2005-02-28T»
(>dateTime) for the specified URL/IP; if | 15:30:45.123Z"
not specified, the URL/IP is
valid with immediate effect
Institute normalizedString, 1 | Financial institution “The Bank*
maxLength=80 designation
HostID ebics:HostIDType 0..1 | EBICS bank system ID “EBIXHOST"
(=token,
maxLength=35)
Version ebics:HPDVersionType 1 | Specification of supported - (complex)
(complex) versions
Protocol list<ebics:Protocol» 1 List of supported EBICS “HOO05"
VersionType> protocol versions
(=1list<token,
length=4,
pattern="H\d{3}">)
Authentication | list<ebics:Authentica» 1 List of supported “X002”
tionVersionType> identification and
© EBICS SC Page: 197

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

(>1list<token, authentication versions
length=4,
pattern= "X\d{3}">)
Encryption list<ebics:Encryption» List of supported “E002”
VersionType> encryption versions
(21list<token,
length=4,
pattern="E\d{3}">)
Signature list<ebics:Signature» List of supported ES “A005 A006*
VersionType> versions
(21list<token,
length=4,
pattern="A\d{3}">)
Recovery - (complex) Parameters for recovery - (complex)
function (recovery of
broken connections); if not
specified, the function is
not supported.
Recovery» boolean Is recovery supported? “true”
@supported (Default=true)
Prevalidation | -(complex) Parameters for preliminary | - (complex)
verification; if not specified,
the function is not
supported
PreValidation» | boolean Is preliminary verification “true”
@supported supported? (Default=true)
ClientData» - (complex) Parameters for “true”
Download downloading customer and
subscriber data
(HKD/HTD); if not
specified, the function is
not supported
ClientDatax» boolean Are administrative order “true”
Download» types HKD/HTD
@supported supported? (Default=true)
Downloadable» | - (complex) Parameters for retrieving - (complex)
OrderData services / BTF for which
order data is available
(HAA); if not specified, the
function is not supported
Downloadable» | boolean Is administrative order type | “true”
OrderData» HAA supported?
@supported (Default=true)
9.2.2.1.3 Example XML
<?xml version="1.0" encoding="UTF-8"?2>
<HPDResponseOrderData
xmlns="urn:org:ebics:HO05"
© EBICS SC Page: 198

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

<AccessParams>
<URL>http://www.the-bank.de</URL>
<URL valid from="2005-02-15T15:30:45.1232">192.168.0.1</URL>
<Institute>The Bank</Institute>
<HostID>EBIXHOST</HostID>
</AccessParams>
<ProtocolParams>
<Version>
<Protocol>H005</Protocol>
<Authentication>X002</Authentication>
<Encryption>E002</Encryption>
<Signature>A005 A006</Signature>
</Version>
<Recovery supported="true"/>
<PreValidation supported="true"/>
<DownloadableOrderData supported="true"/>
</ProtocolParams>
</HPDResponseOrderData>

9.3 HKD (retrieve customer’s customer and subscriber information)

With HKD, the subscriber can retrieve information stored by the bank relating to his company
and all associated subscribers (including themselves).

The bank's response contains a list of the accounts of the customer.
An account is only included in the HKD response if at least one of the following conditions is
complied with:
1. The customer possesses an agreement on the provision of bank statements for the
account.
2. At least one of the customer's subscribers is authorised to sign for the account.
It is not relevant whether the account holder is the same customer the HKD is retrieved for.

HKD is an administrative order type of type “download”.

9.3.1 HKD request

The HKD request does not contain specific data that goes beyond that named in the general
transaction description.

9.3.2 HKD response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HKD: HKDResponseOrderData

© EBICS SC Page: 199
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9.3.2.1.1 XML schema (graphic representation)

|_ - - - - - - — — —
ebics:HEDResponseOrderDataType |

ebics:Partnerinfo |

Custorner data, |

HKDResponseOrderData E}I—_(_..._ IEIII{:S:Userlnfo

Order data For arder bype HED: ! e 1.0 |
[Fesponse: receive custorner-bazed | l ST @,
informnation on the custorner and | y |

the customar's users),

Jo]

Bl constraints
[l k=v HKDAccountKey

| zelector Jebics:Partnerinfo/ebics:... |

feld @in

Key For the identification of the
account,

B keyref HEDAccountRef
refer | ehics:HEDACCountey

| selecton Jebics:serinfo/ebics:Pe..

| fizld ebics:AccountlD

Reference to the account
identification keys,

Diagram 90: HKDResponseOrderData

© EBICS SC Page: 200
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ebics:Addressinfo

ebics:Bankinfo

ebics:AccountType (extension _|

attributes

- ebics:Accountlumber

3 attributes
= cbics:NationalAccountlumber E]—

n free format, Format identification,

0.

B sttributes

;
| international

PartnerinfoType [==

Eel:uics:ElanI-:Coc:ie [

i- Prefix

L
0.2

B stiributes
= ebics:NationalBankCode [%]—

nk code in free format, Format identification,

L-Jany ##other

e

0.x
————]
Diagram 91: PartnerinfoType (to Partnerinfo)
©EBICS SC Page: 201

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= i
-+ ebics:Hlame !
.

'
]
'
'
'
]
'
-
'
]
'
'
'
]
'
L
'
]
'
'
'
]

(A{I{Iressllrfonre E]—(—“'—E -:' B 'E

Crata type For address

infarmation with regard to
distributed signature (order -
types HED, HTD.

shate,

1
'
v Country
:
LT S
L--any #Hother i
__________________ o __f/
%
0.«

Diagram 92: AddressinfoType (to Addressinfo)

BankinfoType [

E sttributes

0.

Diagram 93: BankinfoType (to Bankinfo)

© EBICS SC Page: 202
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

—Fel:ics:ﬁ.dmint}rderﬁrpe |

1
[
[
|

.

L-aany ##other 7,
gl it ey
~

0=

Diagram 94: AuthOrderinfoType (to Orderinfo)

B attributes |

| Status |

UserinfoType [

Diagram 95: UserInfoType (to Userlnfo)

© EBICS SC Page: 203
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

(UserPermissionType [TI:I—

HKD, HTD

afiributes

—Fel:ics:hdmint}rderﬁrpe |

.
-4 any ##other
 any ##oth er

_________ -

0=

Diagram 96: UserPermissionType (to Permission)

9.3.2.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute

HKDResponse» ebics:HKDResponse» 1 Order data for - (complex)

OrderData OrderDataType administrative order type
(complex) HKD

PartnerInfo ebics:PartnerInfoTyp 1 Customer data - (complex)
e (complex)

AddressInfo ebics:AddressInfoTyp 1 Customer’s address - (complex)
e information

Name (in ebics:NameType 0..1 | Customer’'s name “John Doe*

AddressInfo) (®normalizedString)

Street ebics:NameType 0..1 | Customer’s street and “Elmstreet 1“
(®normalizedString) house number

PostCode token 0..1 | Customer’s post code “12345°¢

City ebics:NameType 0..1 | Customer’s city “Smallville*
(®normalizedString)

Region ebics:NameType 0..1 | Customer’s region / Federal | “Virginia“
(®normalizedString) State

Country ebics:NameType 0..1 | Customer’s country “USA*
(®normalizedString)

BankInfo ebics:BankInfoType 1 Information on customer’s - (complex)
(complex) financial institution

connection

HostID ebics:HostIDType 1 EBICS bank system ID “EBIXHOST"
(>token, “EBICS-
maxLength=35 HOST4711”

© EBICS SC Page: 204

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

“BANKFRPP”
Parameter Reference to global 0..« | Structure for generic key - (complex)
element (complex) value parameters with
optional type specification
AccountInfo ebics:AccountType 0... | Information on customer’s - (complex)
(complex) accounts. An account is
only listed in the HKD
response if the customer
possesses an agreement
on the provision for it, OR if
at least one of the
customer's subscribers is
authorised to sign for the
account. The account
holder does not have to be
the same customer as the
one the HKD is retrieved
for.
AccountInfo» ebics:CurrencyBaseTy 0..1 | Currency code for the “EUR”
@Currency pe account in question,
(Dtoken, length=3) according to 1SO 4127; if
not specified, “EUR” is
assumed
Description ebics:Account» 0..1 | Textual description of the “Giro account®
DescriptionType account
(?normalizedString)
AccountInfo@ID ebics:AccountIDType 1 Unambiguous account “ABCDEFG»
(>token, identification code abcdefg»
maxLength=64) 1234567890
- - 1..2 | Information on the account | -
number: AccountNumber
and/or
NationalAccountNumber
AccountNumber ebics:AccountNumber» 1 Account number (German ,123456789
Type format or international as
(>token, IBAN)
maxLength=40,
pattern="\d{3,10}|
([A-2]1{2}\d{2}
[A-Za-z0-9]{3,30})™)
AccountNumber» boolean 0..1 | Isthe account number “false”
@international given in national=German
(false, default) or in
international=IBAN format
(true)?
National» ebics:National» 1 Account number in free ,12345678901
AccountNumber AccountNumberType format (for national account | 23456"
(Stoken, numbers which comply
maxLength=40) neither to German nor
international standards)
National» token 1 Description of the format of | ,other*
Account» the account number
© EBICS SC Page: 205

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Number@format
- - 0..2 | Information on the bank -
code: BankCode and/or
NationalBankCode
BankCode ebics:BankCodeType 1 Bank sort code (German ,20010070*
(>token, format or international as
maxLength=11, SWlFT-BlC)
pattern="\d{8} |
([A-Z]1{6}[A-Z0-9]{2}
([A-Z0-91{3})2)")
BankCode» boolean 0..1 | Isthe bank sort code given | “false”
@international in national=German (false,
default) or in
international=SWIFT-BIC
format (true)?
BankCode» ebics:BankCodePrefix 0..1 | National bank sort code “DE"
QPrefix » prefix
Type
(2token, length=2)
NationalBank» ebics:National» 1 Bank code in free format ,12345678901
Code BankCodeType (neither German format nor | 2°
(Stoken, SWIFT-BIC)
maxLength=30)
NationalBank» token 1 Description of the bank “other”
Code@format code format
AccountHolder ebics:AccountHolder» 0..1 | Name of the account holder | “John Doe*
Type
(?normalizedString)
UsageOrder» ebics:UsageOrderType | 0..1 | Order restrictions for the “STAIZV”
Types account in question; if not
specified, there are no
restrictions as to specific
BTF identifiers for the
account in question; if the
empty tag is used, the
account in question has not
been activated for any BTF
identifiers
Service ebics:RestrictedServ | Q.. « | Kind of business
iceType transaction, identified by
for this structure refer to the service structure
chapter 8.3.6
OrderInfo ebics:0rderInfoType 1..~ | Information on the - (complex)
(complex) administrative order types
and services /BTF assigned
to the customer
AdminOrderType ebics:0rderTBaseType 1 The administrative order
(>token, length=3, type assigned to the “BTD”, BTU”
pattern="[A-Z0- customer (for up-
2131 download of
business
transactions
Service ebics:RestrictedServ 0..1 Kind of business
© EBICS SC Page: 206

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

iceType
for this structure refer to
chapter 8.3.6

transaction, identified by
the service structure

Description ebics:Order» 1 Textual description of the “SEPA credit
DescriptionType kind of order transfer*
(®normalizedString,
maxLength=128)

NumSig» nonNegativeInteger 0..1 | Number of ES’s required 2

Required for the kind of order;

default=0, unless specified

UserInfo ebics:UserInfoType 1.. | Subscriber information - (complex)
(complex)

UserID ebics:UserIDType 1 Subscriber ID “USR100"
(=2token,
maxLength=35,
pattern="[a-zA-Z0-
9,=11{1,35})

UserID@Status ebics:UserStatusType 1 Subscriber’s state: 1
(PnonNegativelntege 1: Ready: Subscriber is
r, maxInclusive=99) permitted access

2: New: Initial state after
establishing the subscriber
for EBICS ("established")
3: Partly initialised (INI):
Subscriber has sent INI file,
yet no HIA

4:Partly initialised (HIA):
Subscriber has sent HIA
order, but no INI file yet

5: Initialised: Subscriber
has sent HIA order and INI
file

6: Suspended (several
failed attempts), new
initialisation via INI and HIA
possible)

7: New_FTAM: Not
applicable

8: Suspended (by the
customer's SPR order),
new initialisation via INI and
HIA possible

9: Suspended (by bank),
new initialisation via INI
and HIA is not possible,
suspension can only be
revoked by the bank

Name (in UserInfo) | ebics:NameType 0..1 | Subscriber’'s name “John Doe*
(®normalizedString)

Permission ebics:PermissionType 1..00 Information on the - (Comp|ex)
(complex) subscriber’s authorisations

Permission» ebics:Authorisation» 0.1 Signature class for which “A“

@Authorisa» LevelType the subscriber is

tionlevel (Dtoken, length=1: authorised: “E*=Individual
RN TAT,TRT,) signature, “A“=First

© EBICS SC Page: 207

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

signature, “B“=Second
signature, “T“=Transport
signature.
Not to be specified in the
case of downloads
AdminOrderType ebics:0rderTBaseType 1 The administrative order
(Ptoken, length=3, type assigned to the “‘BTD”, BTU”
pattern="[A-20- customer (for up-
91431 download of
business
transactions
Service ebics:RestrictedServ 0..1 Kind of business
iceType transaction, identified by
for this structure refer to the service structure
chapter 8.3.6
AccountID ebics:AccountIDType 0..~ | Reference to the “ABCDEFG»
(Dtoken, identification code of an abcdefg»
maxLength=64) authorised account 1234567890¢
MaxAmount ebics:AmountType 0..1 | Amount upper threshold up | 5000.00
(ebics:AmountvValue to which the subscriber’s
> signature authorisation is
T;f; - valid (Validity of the
L reference is enforced by
totalDigits=24,
fractionDigits=4) the EBICS XML schema)
MaxAmounts» ebics:CurrencyBaseTy 0..1 | Currency of the maximum “EUR”
@Currency pe amount, according to ISO
(Dtoken, length=3) 4127; if not specified,
“EUR” is assumed

Notes on the clarification:

The allocation of account authorisations for the particular subscribers is effected by means of
the element UserInfo/Permission in the following way:

If the element AccountID is not transferred with UserInfo/Permission, the
administrative order types and service identifier transferred with UserInfo/Permission
apply automatically to all accounts of the respective customer.

However, if the element AccountID is transferred with UserInfo/Permission, the
authorisations transferred with the respective element
UserInfo/Permission/OrderTypes apply exclusively to the account IDs referenced via
AccountID.

9.3.2.1.3 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HKDResponseOrderData

xmlns="urn:org:ebics:HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_orders HO05.xsd">

<PartnerInfo>
<AddressInfo>
<Name>John Doe</Name>
<Street>Elmstreet 1</Street>

© EBICS SC Page: 208

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<PostCode>12345</PostCode>
<City>Smallville</City>
<Region>Virginia</Region>
<Country>USA</Country>
</AddressInfo>
<BankInfo>
<HostID>EBIXHOST</HostID>
</BankInfo>
<AccountInfo ID="accid01l" Currency="EUR" Description="Girokonto">
<AccountNumber international="false">123456789</AccountNumber>
<BankCode international="false" Prefix="DE">50010070</BankCode>

<AccountHolder>John Doe</AccountHolder>
</AccountInfo>

<OrderInfo>

<AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>EOP</ServiceName>
<MsgName>camt.053</MsgName>
</Service>

<Description>Download IS020022 Account statement</Description>
</OrderInfo>
<OrderInfo>

<AdminOrderType>BTU</AdminOrderType>
<Service>

<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>
</Service>

<Description>SEPA Credit transfer order</Description>
<NumSigRequired>2</NumSigRequired>
</OrderInfo>
</PartnerInfo>
<UserInfo>
<UserID Status="1">USR100</UserID>
<Permission>

<AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>EOP</ServiceName>
<MsgName>camt.053</MsgName>
</Service>

</Permission>

</UserInfo>

<UserInfo>
<UserID Status="1">USR200</UserID>
<Permission AuthorisationLevel="A">

<AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>SDD</ServiceName>
<MsgName>pain.008</MsgName>
</Service>

<AccountID>accid01</AccountID>
<MaxAmount Currency="EUR">6000.00</MaxAmount>
</Permission>

<Permission><AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>EOP</ServiceName>
<MsgName>camt .053</MsgName>
</Service>

</Permission>
</UserInfo>
</HKDResponseOrderData>

© EBICS SC Page: 209
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9.4 HTD (retrieve subscriber’s customer and subscriber information)

With HTD, the subscriber can retrieve information stored by the bank relating to their
company or themselves; however, in contrast to HKD they are not given information on the
company’s other subscribers.

HTD is an administrative order type of type “download”.

9.4.1 HTD request

The HTD request does not contain specific data that goes beyond that named in the general
transaction description.

9.4.2 HTD response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for
HTD: HTDResponseOrderData

9.4.2.1.1 XML schema (graphic representation)
r—————————

ebics:HTDReponseOrderDataType

Order data For order bype HTD |
[response: receive user-based |
infarrniation on the user's customer

and the user herselFhirself),

ebics:Partnerinfo

Custorner data,

HTDResponseOrderData

zer data.

1 - T
--4any #other T
| g
5

0.0

8

Bl constraints
Bl key HTDAccountKey

| zelector Jebics:Partnerinfo/ebics:... |

field @in

Key For the identification of the
account,

|
|
|
(..._ ebicsiUserinfo |
|
|
|

E keyret HTDAccountRef
refer | ehics:HTDACccourtkey

| zelector Jebics:Iserinfo/ebics:Pe..

| fizld ebics:AccountlD

Reference to the account
identification keys,

Diagram 97: HTDResponseOrderData

© EBICS SC Page: 210
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9.4.2.1.2 Meaning of the XML elements/attributes

XML element/ Data type # Meaning Example
attribute
HTDResponse» ebics:HTDResponse» 1 | Order data for - (complex)
OrderData OrderDataType (complex) administrative order
type HTD
PartnerInfo ebics:PartnerInfoType 1 Customer data - (complex)
(complex)

UserInfo ebics:UserInfo (complex) 1 | Subscriber information | - (complex)

For the remaining XML elements and attributes: See administrative order type HKD (Chapter
9.3.2.1.2).

The clarification on the allocation of account authorisations itemised in this chapter applies
as well.

9.4.2.1.3 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HTDResponseOrderData

xmlns="urn:org:ebics:HO05"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:org:ebics:H005 ebics_orders HO005.xsd">

<PartnerInfo>
<AddressInfo>
<Name>John Doe</Name>
<Street>Elmstreet 1</Street>
<PostCode>12345</PostCode>
<City>Smallville</City>
<Region>Virginia</Region>
<Country>USA</Country>
</AddressInfo>
BankInfo
<HostID>EBIXHOST</HostID>
</BankInfo>
<AccountInfo ID="accid01l" Currency="EUR" Description="Giro account">
<AccountNumber international="false">123456789</AccountNumber>
<BankCode international="false" Prefix="DE">50010070</BankCode>
<AccountHolder>John Doe</AccountHolder>
</AccountInfo>
<OrderInfo>
<AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>EOP</ServiceName>
<Scope>DE</Scope>

<MsgName>mt940</MsgName>

</Service> <Description>Download SWIFT daily accounts</Description>
</OrderInfo>
<OrderInfo>
<AdminOrderType>BTU</AdminOrderType>
<Service>

<ServiceName>SCT</ServiceName>
<MsgName>pain.001</MsgName>

</Service> <Description>Send SEPA credit transfer order</Description>

© EBICS SC Page: 211
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<NumSigRequired>2</NumSigRequired>
</OrderInfo>
</PartnerInfo>
<UserInfo>
<UserID Status="1">USR100</UserID>
<Permission>
<AdminOrderType>BTD</AdminOrderType>
<Service>

<ServiceName>EOP</ServiceName>
<Scope>DE</Scope>

<MsgName>camt .053</MsgName>
</Service>
</Permission>
<Permission AuthorisationLevel="A">
<AdminOrderType>BTU</AdminOrderType>
<Service>

<ServiceName>DCT</ServiceName>
<Scope>BIL</Scope>

<MsgName>abcdl123</MsgName>
</Service>
<AccountID>accid01</AccountID>
<MaxAmount Currency="EUR">6000.00</MaxAmount>
</Permission>
</UserInfo>
</HTDResponseOrderData>

9.5 HEV (Download of supported EBICS versions)

By means of HEV the subscriber can inform himself of the EBICS versions supported at the
bank's end. The bank's response contains a list of supported EBICS versions and the version
of the relevant schema.

HEV is an administrative order type of type “download”.

9.5.1 HEV request

The HEV request retrieves only EBICS versions which are supported by the bank. This
request can also be executed by subscribers not initialised. Therefore, an identification and
authentication signature is not required.

Only the following information is mandatorily transmitted along with the HEV request:

= Host ID of the EBICS bank computer

The transaction is cancelled and the return code EBICS_INVALID_HOST _ID is returned if
the transmitted HostID is unknown on the bank’s side.
Note: This return code is only allowed for the HEV request!

9.5.2 HEVresponse

The response provides the following information:

= technical return code

© EBICS SC Page: 212
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= technical report text

= See document “EBICS Annex 1 Return Codes” for the value ranges of both fields. As the
EBICS version of the customer system is unknown to the bank system at the time of the
HEV request, the bank system assigns values to the fields which are defined in the most
updated EBICS version supported at the bank's end. As there is no language-attribute
available in the request, the report text is always transmitted in English.

= List of the EBICS versions supported by the bank system and names of the schema
versions relevant for these

9.5.3 Schema for HEV request / HEV response

For HEV request und HEV response the neutral schema ebics_hev.xsd is used which is
independent of the EBICS versions currently supported by the bank and can be retrieved
from https://www.ebics.org/en/ebics-schema. The schema contains request and response. In
the case of a request, ebicsHEVRequest must be filled in, in case of a response,
ebicsHEVResponse must be filled in.

|
ebicsHEVRequest E]_I(*

request data

1 Ea
---any #other \. |

| --------- o

| ~ ebics:ReturnCode |

Confitmation of the caried |
out status with a unique
aror code, |

E&l}iCS‘-:REDDI'tTEIt |

| Clear text of the response
[caried out status),

ehicsHEVResponse E]_r@g_ 0 atributes

response data r = i SV SIS VS SN | ProtocolVersion |

e E R R e EBRICS-scherne-version, ..

0. HO0zZ, well-defined Far
ERICS-release-Wersion

the bank, e.q. 2.4

L.
t-<any #other
_________________ lp

|

| i

| E EBICS-teleases supported by
| i

| 0.

Diagram 98: HEVRequest / HEVResponse

© EBICS SC Page: 213
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

See https://www.ebics.org/en/ebics-schema for the textual representation of the schema

ebics_hev.xsd .

9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response

XML element/ Data type # Meaning Example
attribute
System ebics:SystemReturnCodeType 1 Technical return Value range
ReturnCode (complex) code and error for code
message (in English) | according to
document
“EBICS
Annex 1
Return
Codes”
VersionNumber ebics:VersionNumberType 0..« | EBICS version 02.40
(complex) supported by the (complies also
(>token, length=5, bank to 2.4)
pattern="[0-9]1{2}[.][0-
91 {z}"
ProtocolVersion ebics:ProtocolVersionType 1 Schema version HOO05

(2token, length=4)

relevant for the
supported EBICS
version

9.5.3.2 Example XML for the HEV response

<?xml version="1.0" encoding="UTF-8"?>

<ebics:ebicsHEVResponse xsi:schemaLocation="http://www.ebics.org/H000 ebics_ hev.xsd"
xmlns:ebics="http://www.ebics.org/HO00" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<ebics:SystemReturnCode>

<ebics:ReturnCode>000000</ebics:ReturnCode>

<ebics:ReportText>EBICS OK</ebics:ReportText>
</ebics:SystemReturnCode>

<ebics:VersionNumber ProtocolVersion="H004">02.50</ebics:VersionNumber>
<ebics:VersionNumber ProtocolVersion="H005">03.00</ebics:VersionNumber>

</ebics:ebicsHEVResponse>

© EBICS SC

Page: 214

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10 EBICS Customer acknowledgement (HAC)

10.1 Preliminary Notes

1. The following stipulations for the allocation of the pain.002 message (ISO Edition 2009) only apply
to the EBICS customer acknowledgement (HAC: H label for technical EBICS administrative order
type; A = Acknowledgement; C = Customer).

HAC describes all actions and results that occur while uploading, downloading, or signing files and
may give — in addition — information about the content of the order/file (display file).

2. The aim is to use an international standard (schema); we have chosen 1ISO20022 pain.002
B Because at present pain.002 is the best alternative although it is not ideal.
B As along-term solution, an ISO message especially designed for this purpose should be
requested
3. When downloading HAC, the customer receives all status information since the download of the
last HAC. It contains all actions and status information of the PartnerID. For this the element group
<OrgnlPmtInfAndSts> contains 1..n occurrences. Every occurrence is one protocol step.
Note: In fact this element group is optional. An essential rule for the EBICS customer
acknowledgement is that the element group <OrgnlPmtinfAndSts> occurs at least once.
4. The main focus of the XML-based HAC is the automatic evaluation (suitable preparation by the
client system is necessary).

10.2 Allocation of pain.002 for HAC

Complete message — general overview:

OrgniGrpInfAndSts

| L orgminiandsis
| | e AL |

10.2.1 Allocation of the element group Group Header

Element group <GrpHdr> - overview:

© EBICS SC Page: 215
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

|
|
|
|
| |
| i
|
|
| i_PartyﬁChoice _i : |
| | e]
| | e i
| | | | 1]
___________ | | [orgd - i
[&L 0 € : | . oy
hal | [
M TBleeaEs i
| | I | I|)
| : S ||
| | (P 1
| \-___ _ -—-________________ 1
e |
: { Ctetntis B : |

Stipulations for the allocation:

This element group occurs exactly once.

All elements in <GrpHdr>, which are not mentioned in the list, will never be used in
HAC!

NEE XML Tag Rules for HAC
Messageldentifica | <Msgld> Mandatory in the ISO schema
tion (and in HAC as well)
CreationDateTime | <CreDtTm> Mandatory in the ISO schema

(and in HAC as well):

Creation date/Time of the pain.002 message.

Allocation rule: The representation of <CreDtTm> must be the
same as specified for EBICS-schema (see EBICS
specification chapter 2.3). Example: 2015-05-13T10:00:00Z

InitiatingParty <InitPty><ld><Orgld> Element group for the transfer of the HostID (optional in the
ISO schema; but mandatory in HAC)

Hostld (technical ID for the EBICS bank server) to be
allocated in <Othr>.

© EBICS SC Page: 216
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10.2.2 Allocation of the element group Original Group Information and Status

As to ISO this element group occurs exactly once.

There are two mandatory elements: <OrgnIMsgld> and <OrgnlMsgNmId> (both type
Max35Text). They state grouping information concerning the original message. By reason
that HAC states information on a collection of different orders/actions of a PartnerID, these
elements are allocated with the constant ,EBICS®.

10.2.3 Allocation of the element group Original Payment Information and Status
This element group is optional in ISO but for HAC it must occur at least once!

Element group <OrgnlPmtinfAndSts> - Overview:

|E |g||T1IP:y|;nEonTmEI _______ _i

| |

I £ OrgniNib0rTcs | |

| o }

I Fpmiinists |

| | Sl'ltusRe'lsonlnfmm'monn_i |

--------- |

"@Eéb]%iﬂi{'biﬁn}i%f? B | aw |
"""""""""" T s e |
| | L Fhaaie |

| T D | |
——————— |

| -1 WborTxsPersts [} |

I """""" o |

| { Tanfandsts [|

""""" i |
|\ |

Stipulations for the allocation:
All elements in <OrgnlPmtinfAndSts>, which are not mentioned in the list, will never be used
in HAC!

INENE) XML Tag Rules for HAC

OriginalPaymentl | <OrgnlPmtinfld> Mandatory in the ISO schema (and in HAC as well).

nfo_ramtlonldentlfl Information on the type of action; see chapter 10.2.3.1

cation

StatusReasonInfo | <StsRsnInf> [0..unbounded] in ISO schema, occurrence exactly one time

rmation in HAC
Information on the order (including all involved users and the
timestamp), the result of the action and data for the display
file; see chapter 10.2.3.2

© EBICS SC Page: 217

Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

10.2.3.1 Type of action

The type of action is allocated in the element <OrgnIPmtInfld>.
The following range of values is defined for that:

»type of action“ transmission

File submitted to the bank

Each kind of file upload except the
upload of an ES file

FILE_UPLOAD

File downloaded from the bank

Each kind of file download except
the download of an ES file

FILE_DOWNLOAD

Electronic signature submitted to
the bank

Upload of an ES file using the
EDS process (administrative order
type HVE)

ES_UPLOAD

Electronic signature downloaded
from the bank

Download of an ES file
(reserved for later versions)

ES_DOWNLOAD

»type of action*
postprocessing (EDS etc.)

Signature verification

Bank server verifies the
transmitted ES

ES_VERIFICATION
Code when no EDS is used.

Forwarding to EDS

File is stored in the EDS process
waiting for the necessary ES’s

VEU_FORWARDING

EDS signature verification

Bank server verifies the
transmitted ES within the EDS
process

VEU_VERIFICATION
Code when EDS is used.

End of EDS signature
verification

The verification process in the
EDS is finished, because the last
ES necessary for authorisation of
a payment within the EDS was
verified successfully.

In case of an incorrect last VEU
the type of action
VEU_VERIFICATION with a result
of the action (ISO error code)
allowed for this case must be used
(see chapter 10.4).

VEU_VERIFICATION_END

Cancellation of EDS order

Order is cancelled by a authorised
user within the EDS process

VEU_CANCEL_ORDER

»type of action”
additional information

Provision of additional information
from bank to customer using HAC
(in <AddtlInf>)

ADDITIONAL

© EBICS SC

Page: 218
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

One of the “final indication” types of action has to be provided to indicate that no further protocol steps
are due for the corresponding order. For this type of action no reason code (in result of action) is

allowed. It is simply a label.

»type of action“ final indication

HAC end of order (positive)

With reference to an orderID this
label serves as the end label (no
protocol step follows) for the
orderID.

The order is positively completed
at EBICS level, which means that
either all signatures required for
approval are correct and the order
can therefore go into further
processing or that the order has
been cancelled by an authorised
user (administrative order type
HVS).

ORDER_HAC_FINAL_POS

HAC end of order (negative)

With reference to an orderID this
label serves as the end label (no
protocol step follows) for the
orderID.

The order could not be processed
on EBICS level completely for
several reasons (see codes of
results of action in the previous
HAC step(s) of this order, e.g
either due to incorrect signatures
or due to a technical error.)

ORDER_HAC_FINAL_NEG

10.2.3.2 Result of action

The result of action is allocated in the element group Status Reason Information.
Element group <StsRsnInf> - Overview:

Stipulations for the allocation:

All elements in <StsRsnInf>, which are not mentioned in the list, will never be used in HAC!

© EBICS SC

Page: 219
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Name
Originator / Name

XML Tag
<Orgtr><Nm>

Rules for HAC
Name of the customer

Originator /
Identification /
Organisationldenti
fication /Other

<Orgtr><ld><Orgld><Ot
hr>

1) <ld>

2) <SchmeNm><Prtry>

Note: lenght of Id name =
Mmax35text

Element group (0..N occurrences) for different
identification codes with the following
meaning:ldentification 1D

The code in <SchmeNm><Prtry> identifies the kind of ID
in the element <Id> (Most of the ID names are already
defined in EBICS; in this case they are provided in EBICS
notation):

» UserlD (ldentification of the user)

PartnerID (Identification of the client)
SystemID (Identification of the technical user)
OrderID (order number)

AdminOrderType

ServiceName

Scope

ServiceOption

ContainerType

MsgName

YV V V V V V V V V V

OrderIDRef (If the action refers to another order,
the OrderID is allocated here)

Y

AdminOrderTypeRef (If the action refers to
another order, the administrative order type is
allocated here) and the service identifiers as well:

ServiceNameRef
ScopeRef
ServiceOptionRef
ContainerTypeRef
MsgNameRef

YV V V V V V

PartnerIDRef (If the action refers to another order
AND another Partner, the PartnerID is allocated
here)

» TimeStamp (Timestamp of the action provided in
ISO 8601 format, analogous to chapter 2.3 in the
EBICS specification)

» DataDigest (Hash value)

Note 1: All IDs noted above have to be provided in HAC in
case they are available on the bank server.

Note 2: If IDs for service elements “Ref” are present (e.qg.
ServiceNameRef) “the (current) AdminOrderType”can
only be a H* order type. Therefore the identifier
“ServiceName” to “MsgName” cannot be present.

© EBICS SC

Page: 220
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Name
Reason

XML Tag
<Rsn>

Rules for HAC
Result of the action, table see in chapter 10.3.

All types of results are defined as 1ISO reason codes
(to be allocated in <Cd>).

This element is mandatory for HAC except:
The type of action <OrgnlPmtinfAndSts><OrgnlPmtinfld>
contains

1) one of the two “final indication” labels (see chapter
10.2.3.1). In this case it is not permitted to provide <Cd>.
2) “ADDITIONAL”. In this case the allocation is optional.

Additionallinformat
ion

<AddtlInf>

In case afile is displayed (display of an extraction of the
content of afile) there are 1..n occurrences (see chapter
0)

Further free text (Max105Text) is always permitted. The
use is optional and repeatable at will (it may be used for
free text information for customers) and the content of the
element <AdditionalOrderIinfo> (information regarding the
order on the part of the client) — as this information may
be up to 255 characters, more than one occurrence is
possible)

10.2.3.3 Display file (Use in Germany)

The content for the display file (Information about the file content) is provided in
<StsRsnInf><Addtlinf>.
The display file will be delivered with the final indication label (ORDER_HAC_FINAL, refer to

chapter 10.2.3.1).

Note: This also applies to files with missing SignatureFlag meaning that the file is not
authorised by ES but by accompanying note signed by hand.
The existing character of the display file can be reused: Each line is one occurrence of

<AddtlInf>.

Name

rmation /
Additionallnformat
ion

StatusReasonlInfo

XML Tag

<StsRsnlInf><AddtlInf>

Rules for HAC
Only used for specific data in free text:

1. Examples for commonly used formats see chapters 0,
10.2.3.3.2 and 10.2.3.3.3

2. Hash value (only needed for SEPA container file)

3. display file for files without specific format

© EBICS SC

Page: 221
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10.2.3.3.1 Example for SEPA

HAC resulting from a pain.001 message with 3 Payment Information Blocks

<StsRsnInf>

<AddtlInf>GUTS CHR I FTE N</Addtlinf>
<Addtlinf>Datei-ID: 4782647268346</AddtlInf>
<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

<AddtlInf>

/Addtlinf>

<Addtlinf>Sammlerreferenz
<Addtlinf>Bank-Code
<Addtlinf>Kontonummer
<Addtlinf>Auftraggeberdaten
<Addtlinf>Anzahl der Zahlungssaetze
<Addtlinf>Summe der Betraege (EUR)
<Addtlinf>Ausfuehrungstermin
<Addtlinf>

: 46573264784</AddtlInf>

: WELADEDD</AddtlInf>

: DE44300500000054627452</AddtlInf>
: XXX</AddtlInf>

: 187</Addtlinf>

: 68.672,00</AddtlInf>

: 01.12.2010</AddtlInf>

/Addtlinf>

<Addtlinf>Sammlerreferenz
<Addtlinf>Bank-Code
<Addtlinf>Kontonummer
<Addtlinf>Auftraggeberdaten
<Addtlinf>Anzahl der Zahlungssaetze
<Addtlinf>Summe der Betraege (EUR)
<Addtlinf>Ausfuehrungstermin
<AddtlInf>

: 46573264783</AddtlInf>

: WELADEDD</AddtlInf>

: DE44300500000054627452</AddtlInf>
- YYY</Addtlinf>

. 165</Addtlinf>

: 354.378,00</AddtlInf>

: 03.12.2010</AddtlInf>

/AddtlInf>

<Addtlinf>Sammlerreferenz
<Addtlinf>Bank-Code
<Addtlinf>Kontonummer
<Addtlinf>Auftraggeberdaten
<Addtlinf>Anzahl der Zahlungssaetze
<Addtlinf>Summe der Betraege (EUR)
<Addtlinf>Ausfuehrungstermin
</StsRsninf>

: 46573264782</AddtlInf>

: WELADEDD</AddtlInf>

: DE30300500000035351767</AddtlInf>
: XXX</AddtlInf>

: 34</Addtlinf>

: 45.100,20</AddtlInf>

: 01.12.2010</AddtlInf>

10.2.3.3.2 Example for SEPA container

HAC resulting from a container with 2 pain.001 messages

<StsRsnInf>

<Addtlinf>G UTS CHRIFTE N</AddtlInf>
<Addtlinf>Datei-ID: 4782647268346</AddtlInf>
<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

<AddtlInf>

/AddtlInf>

<Addtlinf>Sammlerreferenz
<Addtlinf>Bank-Code
<Addtlinf>Kontonummer
<Addtlinf>Auftraggeberdaten
<Addtlinf>Anzahl der Zahlungssaetze

: 46573264784</AddtlInf>

: WELADEDD</AddtlInf>

: DE44300500000054627452</AddtlInf>
: XXX</AddtlInf>

: 187</Addtlinf>

© EBICS SC

Page: 222

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

<Addtlinf>Summe der Betraege (EUR) : 68.672,00</AddtlInf>
<AddtlInf>Ausfuehrungstermin : 01.12.2010</AddtlInf>
<AddtlInf>Hash-Wert : 24 AE 87 34 FE BA 22 12</AddtlInf>

<AddtlInf> 34 E4 5A 34 54 33 43 23</AddtlInf>
<AddtlInf> 15 34 55 78 FA F1 33 11</Addtlinf>
<AddtlInf> 93 67 30 03 19 67 BE FA</AddtlInf>

<AddtlInf>GUTS CHR I FTE N</Addtlinf>
<Addtlinf>Datei-ID: 4782647268347</AddtlInf>
<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

/Addtlinf>

<AddtlInf>
<Addtlinf>Sammlerreferenz
<Addtlinf>Bank-Code

<Addtlinf>Kontonummer
<Addtlinf>Auftraggeberdaten

<Addtlinf>Anzahl der Zahlungssaetze
<Addtlinf>Summe der Betraege (EUR) :
<AddtlIinf>Ausfuehrungstermin
<Addtlinf>Hash-Wert
<AddtlInf>

<AddtlInf>

<AddtlInf>

</StsRsninf>

: 46573264 785</AddtlInf>
: WELADEDD</AddtlInf>

: DE30300500000035351767</AddtlInf>
S YYY</Addtlnf>

: 23</AddtlInf>

14.256,00</AddtlInf>

: 01.12.2010</AddtlInf>
: 29 AE 87 34 FE BA 22 12</AddtlInf>

34 E4 5A 34 54 33 43 23</AddtlInf>
15 34 55 78 FA F1 33 11</Addtlinf>
93 67 30 03 19 67 BE BB</AddtlInf>

10.2.3.3.3 Example for DTAZV (German format used for international payments)

<StsRsnInf>

<Addtlinf>G U TS CHR I F T E N</AddtlInf>

<Addtlinf>Bank-Code
<Addtlinf>Kundennummer
<Addtlinf>Auftraggeberdaten
<AddtlInf>

<AddtlInf>
<Addtlinf>Erstellungsdatum
<Addtlinf>Auftragswaehrung
<Addtlinf>Bank-Code
<Addtlinf>Kontowaehrung
<Addtlinf>Kontonummer
<Addtlinf>Ausfuehrungstermin
<Addtlinf>Betrag
<Addtlinf>Anzahl der Datensaetze T
<Addtlinf>Summe der Betraege
</StsRsninf>

: 30040000</AddtlInf>
: 0000000001 </AddtlInf>
: KARL MUSTERMANN</AddtlInf>

MUSTERSTR. 1</Addtlinf>
50825 KOELN</AddtlInf>

: 10.05.00</AddtlInf>

: USD</AddtlInf>

: 30040000</AddtlInf>

: EUR</AddtlInf>

: 1234567890</AddtlInf>

: 10.11.00</AddtlInf>

: 20.000,000</AddtlInf>

: 000000000000001</Addtlinf>
: 000000000020000</AddtlInf>

© EBICS SC

Page: 223
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10.3 Annex for HAC: External reason codes (result of action)

The following results of action have to be protocolled in the element <Rsn><Cd>.
They are part of the external ISO code list “ExternalStatusReason1Code”:

ISO o
ISO Name Definition
code
Duplication The data digest of the transmitted order data is already known
AMO5 on the bank server (order data with the same data digest was
transmitted recently)
LimitExceeded Transaction amount exceeds limits agreed between bank and
AM21 client
DS01 ElectronicSignaturesCorrect | The Electronic Signature(s) are correct
DS02 OrderCancelled An authorized user has cancelled the order
DS03 OrderNotCancelled The user’s attempt to cancel the order was not successful
OrderRejected The order was rejected by the bank side
DS04 .
(for reasons concerning content)
b OrderForwardedForPostpro | The order was correct and could be forwarded for postprocessing
S05 cessing
DS06 TransferOrder The order was transferred to EDS
ProcessingOK All actions concerning the order could be done by the EBICS
DS07 bank server
DS08 DecompressionError The decompression of the file was not successful
DS09 DecryptionError The decryption of the file was not successful
DS10 SignerlCertificateRevoked | The certificate is revoked for the first signer.
SignerlCertificateNotValid | The certificate is not valid (revoked or not active) for the first
DS11 :
signer
DS12 IncorrectSignerl1Certificate | The certificate is not present for the first signer
SignerCertificationAuthority | The authority of signer certification sending the certificate is
DS13 Signer1NotValid unknown for the first signer
DS14 UserDoesNotExist The user is unknown on the server
DS15 IdenticalSignatureFound The same signature has already been sent to the bank
PublicKeyVersionincorrect | The public key version is not correct. This code is returned when
a customer sends signature files to the financial institution after
DS16 conversion from an older program version (old ES format) to a
new program version (new ES format) without having carried out
re-initialisation with regard to a public key change.
DifferentOrderDatalnSignat | Order data and signatures don’t match
DS17
ures
RepeatOrder File cannot be tested, the complete order has to be repeated.
DS18 This code is returned in the event of a malfunction during the
signature check, e.g. not enough storage space.
DS19 ElectronicSignatureRightsin | The user’s rights (concerning his signature) are insufficient to
sufficient execute the order
DS20 Signer2CertificateRevoked | The certificate is revoked for the second signer
© EBICS SC Page: 224

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

ISO

ISO Name Definition
code
Signer2CertificateNotValid | The certificate is not valid (revoked or not active) for the second
DS21 .
signer
DS22 IncorrectSigner2Certificate | The certificate is not present for the second signer
SignerCertificationAuthority | The authority of signer certification sending the certificate is
DS23 Signer2NotValid unknown for the second signer
DS24 WaitingTimeExpired Waiting time expired due to incomplete order
OrderFileDeleted The order file was deleted by the bank server
DS25 (for multiple reasons)
DS26 UserSignedMultipleTimes | The same user has signed multiple times
DS27 UserNotYetActivated The user is not yet activated (technically)
DataSignRequested Data signature is required
DSOA In EBICS this means that the Electronic Signature(s) have not
been sent to the bank server yet or that the number of signatures
is insufficient
DSOB UnknownDataSignFormat | Data signature for the format is not available or invalid.
In EBICS this means that the Electronic signature(s) are incorrect
DSOC SignerCertificateRevoked | The signer certificate is revoked
In EBICS this also means that the user is locked
SignerCertificateNotValid | The signer certificate is not valid (revoked or not active). In
DS0D EBICS this means that the public key has not been activated yet
or certificate is not valid
IncorrectSignerCertificate | The signer certificate is not present.
DSOE In EBICS this means that the public key does not exist or
certificate is not present
DSOF SignerCertificationAuthority | The authority of the signer certification sending the certificate is
SignerNotValid unknown
DSOG NotAllowedPayment Signer is not allowed to sign this operation type
In EBICS this means that the user has no authorisation rights
DSOH NotAllowedAccount Signer is not allowed to sign for this account
DOL CorrespondingOriginalFileS | signature file was sent to the bank but the corresponding original
tillNotSent file has not been sent yet.
TransmissonAborted The transmission of the file was not successful — it had to be
TAOL aborted (for technical reasons)
TDO1 NoDataAvailable There is no data available (for download)
TDO2 FileNonReadable The file cannot be read (e.g. unknown format)
TDO3 IncorrectFileStructure The file format is incomplete or invalid
TS01 TransmissionSuccessful The (technical) transmission of the file was successful.
TransferToSignByHand The order was transferred to pass by accompanying note signed
TS04 by hand
© EBICS SC Page: 225

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

10.4 Annex for HAC: Typel/result of action (permitted pairs)

If more than one reason code is suitable the most precise should be chosen.

FILE_UPLOAD AMO5 Upload aborted
TS01 Upload successful
TAO1 Upload aborted
DSoC User locked/certificate revoked
DS08 Decompression error
DS09 Decryption error
FILE_DOWNLOAD TSO01 Download successful
TAO1 Download aborted
DsoC User locked/certificate revoked
DS08 Decompression error
DS09 Decryption error
TDO1 Not data available for download
ES UPLOAD TS01 Upload (of ES) successful
TAO1 Upload (of ES) aborted
DsoC User locked/certificate revoked
DS08 Decompression error
DS09 Decryption error
IDO1 Original order file has not been sent before
ES DOWNLOAD still not in use
© EBICS SC Page: 226

Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

ES_VERIFICATION

AM21
TDO2
TDO3
TS04
DSO01
DSO0A
DS0B
DS0C
DSOD
DSOE
DSOF
DS0G
DSOH
DS10 (DS11; DS12)

DS20 (DS21; DS22)

Amount exeeds limit

File cannot be read

The file format is invalid

Not ES-signed file (no SignatureFlag)

ES(s) are correct

Number of ES(s) insufficient

ES(s) are not correct

Certificate is revoked / user is locked
Certificate is not valid /public key not activated
Certificate not present / public key doesn’t exist
CA for certificate is unknown

Signer not allowed to sign this operation
Signer not allowed to sign this account
Certificate revoked (not valid; not present) for
first signer

Certificate revoked (not valid; not present) for
second signer

CA unknown for first/second signer

DS13/ DS23 : ;
User (means signer) is unknown on the server
DS14
The same ES already has been sent to
DS15DS16 . .
bankPublic kexy version not correct
DS17 ,
order data and ES(s) don’t match
DS18)
Repeat order (file not testable)
DS19 .) . e
Signer’s ES rights are unsufficient
DS24 Lo) .
Waiting time expired and file deleted by bank
DS25 . .
DS26 File deleted by bank (multiple reasons)
Same user signed multiple times
DS27 . ;
DS08 User (means signer) not yet activated
Decompression error
DS09 X
Decryption error
VEU_FORWARDING DS06 Order transferred to the EDS

© EBICS SC

Page: 227
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

VEU_VERIFICATION

AM21
TDO2
TDO3
DS01
DS0B
DS0C
DSOD
DSOE
DSOF
DS0G
DSOH
DS10 (DS11; DS12)

DS20 (DS21; DS22)

Amount exeeds limit

File cannot be read

The file format is invalid

ES(s) are correct

ES(s) are not correct

Certificate is revoked / user is locked
Certificate is not valid /public key not activated
Certificate not present / public key doesn’t exist
CA for certificate is unknown

Signer not allowed to sign this operation
Signer not allowed to sign this account
Certificate revoked (not valid; not present) for
first signer

Certificate revoked (not valid; not present) for
second signer

CA unknown for first/second signer

DS13/ DS23)
User is unknown on the server
DS14
The same ES already has been sent to
DS15DS16 . .
bankPublic kexy version not correct
DS17 ,
order data and ES(s) don’t match
DS18)
Repeat order (file not testable)
DS19)) . .
Signer’s ES rights are unsufficient
DS24 Lo ;)
Waiting time expired and file deleted by bank
DS25 . .
DS26 File deleted py bank (m_ultlpl_e reasons)
Same user signed multiple times
DS27 ;
User not yet activated
VEU_VERIFICATION_END DS05 Order was correct, forwarded for
postprocessing
VEU_CANCEL_ORDER DS02 Order cancelled
DS03 Order not cancelled
ADDITIONAL Optional Note: This is not in the scope of EBICS

ORDER_HAC_FINAL

© EBICS SC

Page: 228
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11 Appendix: Cryptographic processes
11.1 Identification and authentication signature

11.1.1 Process

Identification and authentication signatures are based on the RSA signature process. The
following parameters determine the identification and authentication signature process:
Length of the (secret) RSA key, hash algorithm, padding process, canonisation process.

For the identification and authentication process, EBICS defines the process “X002” with
the following parameters:

Parameter Value

Key length in Kbit >=2Kbit (2048 bit) and <=16Kbit

Hash algorithm SHA-256

Padding process PKCS#1

Canonisation process http:/imww.w3.0rg/TR/2001/REC-xml-c14n-
20010315

The optional XML signature fields “KeyInfo” and “Object” remain unfilled.
The transaction is cancelled with return code EBICS INVALID REQUEST CONTENT if

X001 is still used in a request.

11.1.2 Format

Identification and authentication signatures are represented in EBICS messages in
accordance with the W3C recommendation “Signature Syntax and Processing”
((http://mvww.w3.0rg/TR/xmldsig-core/). Hence identifiers of the algorithms for forming the
hash value, the signature and the indicator of the canonisation process are components of
the identification and authentication signature. Therefore it is hot necessary to change the
XML interface when a new version of “X00n” is defined with altered parameters. This
especially applies for versions that utilise SHA-224, SHA-256, SHA-384 or SHA-512 as a
hash function.

When placing the identification and authentication signature in the element
SignatureValue, it is principally not filled up to the full length of the modulo of the RSA key

for generating this signature. .

© EBICS SC Page: 229
Status: Final V 3.0.2

http://www.w3.org/TR/xmldsig-core/

EBICS specification
EBICS detailed concept, Version 3.0.2

11.2 Electronic signatures

11.2.1 Process

Electronic signatures are based on the RSA signature process. The processes for
generating/verifying electronic signatures are defined in the Appendix (Chapter 14).
EBICS must support Version “A005” or “A006” of the bank-technical electronic signature.

11.2.2 Format

The schema file ,ebics_signature_S002.xsd“ contains the element UserSignatureData for
the signature of the subscriber in EBICS messages. To this end, an instance document is
created for “ebics_signature_S002.xsd” that contains UserSignatureData for subscriber
ES’s as top-level elements. UserSignatureData contains a list of elements
OrderSignatureData for one or more subscriber ES’s (see also Diagram 4).

The XML schema definition file “ebics_orders_H005.xsd” contains the definition of the global
elements BankSignatureData for embedding the financial institution's electronic signature
(As this is an intended feature, the structure is not usable yet, especially
BankSignatureData still contains an element OrderSignature to receive a bank ES in
base64 coding (see Diagram 4).

11.2.3 EBICS authorisation schemata for signature classes

EBICS specifies the authorisation schemata for orders that require one or two bank-technical
ES’s. Authorisation schemata for orders that require more than two bank-technical ES’s are
not described in this standard, although it is not forbidden to transmit more than two ES’s.

E = single signature, A = first signature, B = second signature, T = transport signature (not
bank-technical).

Authorisation schema for orders with a minimum ES quantity = 0:

The minimum quantity ES = 0 applies to orders that are authorised via

accompanying notes (no SignatureFlag) or for key management orders which
require only a transport signature.

Authorisation schema for orders with a minimum ES quantity = 1:

= Authorisation via a single bank-technical ES:

Authorisation of the order with a single ES can be effected with a single E/AIBIT
signature. M|0j0jd
©EBICS SC Page: 230

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

= Authorisation with two bank-technical ES’s: first ES S

Authorisation of the order can also take place with 2 ES’s ¢econdesv | E | A [B | T
of cllass_E, A{or B if at least one of these two is a first or a E M7= 0O
single signature. A 7= =0
B M M|0O|O
T o ojo|d
Authorisation schema for orders with a minimum ES quantity = 2:
= With the exception of the combination of two second fStES>) el A Il B | T
signatures, authorisation of the order is possible with any ~—S6cend ES ¥
combination of two bank-technical ES'’s. E MM M0
A M 4| |0
_ _ B M M| OO0
In general the following applies: T OO0 00

= There is no maximum ES quantity defined, but in the case of more than two ES the
transmitted signatures have to comply with the rules of the authorisation schemas above.

= |ndividual signatures are fundamentally admissible for authorisation, but are only
sufficient in the case of orders where the minimum ES requirement = 0 or ES
requirement = 1

= A transport signature never authorises the execution of an order, it only allows the order
to be submitted

= The order in which signatures are submitted is irrelevant

= The bank-technical ES’s of an order MUST be supplied by different subscribers (if
necessary, also different customers).

11.3 Encryption
11.3.1 Encryption at TLS level

11.3.1.1 Process

The customer system and the bank system MUST agree on the use of one of the following
procedures (so-called “ciphersuites”, see RfCs 2246 and 3268) within the framework of the
TLS handshake (details see current EBICS Annex “Transport Layer Security”)

© EBICS SC Page: 231
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11.3.2 Encryption at application level

11.3.2.1 Process

The process for encrypting the order data and ES’s of an order is a hybrid process based on
the symmetrical encryption process 2-key triple DES and the asymmetrical encryption
process RSA.

The order data and ES’s of an EBICS transaction are symmetrically encrypted. For each
EBICS transaction, a random symmetrical key (transaction key) is generated by the sender
of order data and/or ES’s that is used for encryption of both the order data and the ES’s. The
symmetrical key is transmitted to the recipient asymmetrically-encoded.

Based on standard encryption procedures, EBICS defines the encryption procedure "E002"
with the following characteristics:

= Symmetrical encryption algorithm

Generation of the transaction key
AES-128 (key length 128 bit) in CBC mode
ICV (Initial Chaining Value) =0
Padding process in accordance with ANSI X9.23 /1S0O 10126-2.
= RSA encryption of the transaction key, key length >= 2Kbit (2048 bits) and <=16Kbit

= Padding process for the RSA encryption: PKCS#1

The process for asymmetrical encryption of the transaction key must be adapted for
EBICS as follows:

= Minimum length of the (secret) RSA key is 2048

= The padding process conforms with PKCS#1.

Concretely, these adaptations mean:

= The length of PDEK is equal to the length of the RSA key that is used (>= 2048)
= PDEK is generated from DEK via PKCS#1 padding

= EDEK is the result of the RSA encryption of PDEK.

Analogously, the process for decryption of the transaction key must also be adapted for
EBICS:

= PDEK is the result of the RSA decryption of EDEK

= The 128 lowest-value bits of PDEK form the secret key DEK.

In the context of “E002”, the process SHA-256 is used to form this hash value of the
public RSA key.

© EBICS SC Page: 232
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11.3.2.2 Formats

The compressed and encrypted ES’s and order data segments are embedded in the EBICS
messages as base64-coded binary data.

Within the EBICS messages, transmission of the asymmetrically-encrypted transaction key
takes place within an XML element of type DataEncryptionInfoType. This type is
defined in the XML schema definition file ebics_types_HO005.xsd and its graphical
representation is contained in Diagram 99.

—
| ebics:PubKeyDigestType

|

| Ol attributes |

—Fel:-i{:s:En{:rnrtionPuI}Hey[ligest ﬂi :
|

Hash walue of the public encryption key | I\Ilam!ahl:uf the used hazh
owenied by the receipient of the encrypred alganthra,
order data, L]
H attributes
:
(DatﬂElwrwtionlnfoTwe EI—[—-"—:EI— Wersion of the encryption
rethad,
Crata type For the modelling of
infarmnation regarding the
enctyption of signature and order
data, —Fehi{:s:Transa{:tionHey

1

.

' The as;rr!'umetricalh_r enctypted
' syramnetdc transaction kay,

.

I
- S
L-Jany #other v
.
.................. o
”
0.

Diagram 99: Definition of the XML schema type DataEncryptioninfoType

The element ebicsRequest/body/DataTransfer/DataEncryptionInfo Or
ebicsReponse/body/DataTransfer/DataEncryptionInfo, respectively, of type
DataEncryptionInfoType is a part of the first EBICS request of an upload transaction (cf.
ebics_request_H005.xsd) or the first EBICS response of a download transaction (cf.
ebics_response_H005.xsd).

In contrast to the resolution, bataEncryptionInfoType does not contain any subscriber
details. This is not necessary, since the sender/recipient of the order data is always the
initiating party. The subscriber / customer ID of the initiating party is already a component of
the control data of the first EBICS request of every EBICS transaction and is firmly assigned
to the EBICS transaction.

In addition to the SHA-256 hash value of the certificate in DER binary format, the element
EncryptionPubKeyDigest also contains the version of the encryption process that is
used and the identifier of the hash algorithm used.

© EBICS SC Page: 233
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Therefore it is not necessary to change DataEncryptionInfoType When a new version
“EOON” is defined with altered parameters. This especially applies for versions that allow
SHA-224, SHA-256, SHA-384 or SHA-512 as one or more of the hash functions.

Please note: In the case where no certificate has been used in V 2.x and the key will be
further used in V 3.0 the hash value is only calculated over the public key, i.e. in this case
there is no change in the calculation of the hash value compared to the previous EBICS
version.

When placing the encrypted transaction key in the element TransactionKey it is principally
not filled up to the full length of the modulo of the RSA key for the encryption.

11.4 Replay avoidance via Nonce and Timestamp

11.4.1 Process description

The first EBICS request that serves for initialisation of an EBICS transaction contains the
elements “Nonce” and “Timestamp” that are together intended to prevent replaying of this
request.

“Nonce” and “Timestamp*® form a functional unit for the avoidance of replay:

1. The customer system generates a random “Nonce” and sets a “Timestamp” at
the current point in time that the message is sent.

2. The bank system compares the received “Nonce” with a locally-stored list of
previously-received “Nonce” values. In addition, it verifies the deviation
between the “Timestamp” and the current time. If the “Nonce* that has just
been received is present in the stored list or if the deviation of the “Timestamp”
is greater than a tolerance period specified by the financial institution, the
request is answered with the technical error code
EBICS_TX_MESSAGE_REPLAY.

3. If the “Nonce” and “Timestamp” verification was carried out without errors, the
bank system stores the “Nonce” and “Timestamp” pair in the local list and
continues with the further processing of the message.

The bank system can delete “Nonce”/"Timestamp” pairs whose time stamps lie outside the
tolerance period from its list: Messages that contained such a pair would have already been
rejected due to the excessive deviation of the “Timestamp”. Therefore the fixed tolerance
period applies equally to the verification of new pairs as well as the deletion process of
stored pairs.

With the elements “Nonce” and “Timestamp”, this process guarantees that the first EBICS
request of a transaction is unambiguous. This prevents the bank from initialising new EBICS
transactions on the basis of old, replayed messages. At the same time, “Timestamp” restricts
the chronological necessity of the storage of “Nonce” values by the bank.

© EBICS SC Page: 234
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11.4.2 Actions of the customer system

11.4.2.1 Generation of “Nonce” and “Timestamp”

The customer system MUST fill out the following fields in the transaction phase “Initialisation”:

* ebicsRequest/header/static/Nonce with a cryptographically-strong random
number of length 128 bits

" ebicsRequest/header/static/Timestamp with the current time stamp for
transmission of the EBICS request (date and time in accordance with ISO 8601).

An example of syntactically-correct setting of the values “Nonce” and “Timestamp” is shown
in the following XML excerpt:

<?xml version="1.0" encoding="UTF-8"?2>

<ebicsRequest

xmlns="urn:org:ebics:HO05"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:org:ebics:H005 ebics request HO005.xsd"
Version="H005" Revision="1"> h h

<header authenticate="true">
<HostID>EBIXHOST</HostID>
<Nonce>01A56FF768B3B36C5120E9904A7FB035</Nonce>
<Timestamp>2005-06-22T17:07:34.123+02:00</Timestamp>
[..]

</header>

[..]

</ebicsRequest>

Further information on correct setting of the two XML schema elements can be found under
http://www.w3.org/TR/xmlschema-2/#hexBinary (hexBinary) and
http://www.w3.org/TR/xmlschema-2/#dateTime (dateTime).

11.4.2.2 Behaviour in the event of error response

EBICS_TX_MESSAGE_REPLAY
The bank system uses the technical error code EBICS_TX_MESSAGE_REPLAY to signal
that the EBICS message that has just been sent by the client contains a “Nonce” value that
corresponds with that stored in the bank system, or that the “Timestamp” lies outside the
tolerance period.

When using cryptographically-strong random numbers as “Nonce” and when the financial
institution has selected sensible tolerance periods (guideline: a few hours), the likelihood of
an accidental collision can be disregarded due to the miniscule possibility of its occurrence.

Therefore after receipt of the report EBICS TX MESSAGE_REPLAY, the customer system
must take into account the possibility of a replay attack, an intolerably-imprecise clock setting

© EBICS SC Page: 235
Status: Final V 3.0.2

http://www.w3.org/TR/xmlschema-2/#hexBinary
http://www.w3.org/TR/xmlschema-2/#dateTime

EBICS specification
EBICS detailed concept, Version 3.0.2

at the customer’s or the bank’s end, or an error in its own transaction management in the
assignment of “Nonce” values.

If the subscriber would nevertheless like to successfully transmit the EBICS message in
guestion, they must first regenerate the fields ebicsRequest/header/static/Nonce
and ebicsRequest/header/static/Timestamp in accordance with Chapter 11.4.2.1.
The remaining contents can be left unchanged.

11.4.3 Actions of the bank system

11.4.3.1 Verification of “Nonce” and “Timestamp”

When the bank system receives an initial EBICS message from a subscriber, it MUST carry
out the following actions to verify for message replay. If these verifications are all passed,
there is no message replay.

1.

Matching of received “Timestamp” and local time stamp: Normalised to
UTC, the received “Timestamp” must be within the tolerance period that is
stretched around the current time stamp of the bank system. This tolerance
period will compensate for differences in precision between the clocks
involved in the systems and possibly also early/late changeover to
summer/wintertime. At the same time, the tolerance period determines when
the bank system can delete stored “Nonce”/"Timestamp” pairs. Messages
arriving with a “Timestamp” outside of the tolerance period will not be
accepted. “Nonce”/“Timestamp” pairs that have been stored in the past and
are now outside of the tolerance period can therefore be deleted.

The tolerance period must be set as a one-off occurrence by the bank system.
Here, large values (= large tolerance periods) increase the storage
requirements for valid “Nonce”/“Timestamp” pairs whilst low values (= smaller
tolerance periods) increase the risk of rejected EBICS messages as a result of
excessive clock differences between customer & bank systems.

If the received “Timestamp” is not within the tolerance period there is a risk of
message replay. Therefore the bank system MUST reply with the technical
error code EBICS_TX MESSAGE_REPLAY.

Comparison of the received “Nonce” with the locally-stored “Nonce”
values: All “Nonce”/“Timestamp” pairs that originate from valid EBICS
requests within the tolerance period are stored at the bank’s end. If the
received “Nonce” corresponds with a stored “Nonce” the bank system MUST
reply with the technical error code EBICS TX MESSAGE_REPLAY.

© EBICS SC

Page: 236
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11.5 Initialisation letters

Initialisation letters for INI contain the public bank-technical subscriber certificate, initialisation
letters for HIA contain the subscriber’s public identification and authentication certificate and
the subscriber’s public encryption certificate.

11.5.1 Initialisation letter for INI (example with version A006 of the ES)

User Name Frank Sample

Date TT.MM.JJJJ

Time HH:MM:SS

Host ID BANKXXXX

Bank « name of the bank »

User ID XXXXXXXX

Partner ID YYyyyyyy

Version Name of signature version (i.e. A***)

Signature certificate

Certificate issued to: name-surname or identifier (only present in case of CA issued certificates)
Certificate issued by: name of CA (only present in case of CA issued certificates)

MIIC6DCCAdCgAwIBAgIIW +dFLrrgUjowDQ YJKoZIhveNAQELBQAWK]EoMCYGALUEAWWIRUJIQINQQVJIUTKVSSURIRU

JIQINVUOVSSUQ7Qz1GUjAeFWOXNEXMjMXMTAwMDhaFwOyMTExMjQxMTAwMDhaMCoxKDAmBgNVBAMMHOVCSUN

TUEFSVESFUKIEXOVCSUNTVVNFUKIEOOMIRIIwggEIMAOGCSqGSIb3DQEBAQUAA4IBDWAwWGgEKAOIBAQCgDAUAYZ5Q
h18LOcu9H+wofA+FjglJoK3WKGF5zsyqW DyH9dIsHo7fp3FQXYaRLGi4VyVrSwgdDOF4gxopOnVO6nYevepqiriBD129YB3r

zMxgh/zwuQB60rRyEkr/5mvdddrwW pjeRWErRTVQL5CZpeNZ9G/z96sFa7Rzi2W 7K20Hr+piiC5moB2cqP54InzOIx2Z5V5E9w/
Fxq8rlQP6XnXu8iZv9bZbF2jy9iED3umEav+9H0GN67GFxy2i90KkKO GvemLy9wwiDPF756t2xSrpNhVEFCek8pJPnDkQji93X

gtTSfZXezKuT2L59MhulCH4IMVOOD2xaOvsmHYmISAgMBAAGIEJAQMA4GA1UdDWEB/WQEAWIGQDANBgkghkiGOwOBA
QsFAAOCAQEAW ONNo+PpSXFBciigS76X0ONKYiYTSk3rOUjK/Q/sC+FQX60TgBEbybLXvbGB2fkkUeoQopCugqWkVamJoitn
D+sUPRdAucSMMh1YERLYTRk/15YjtoeeiEGINKIdGbaR9W6KaTMdY6SOIlloyAm/t6HDDhpgL83rN8d5C 1uilpkrPbmgGJ5iOlk
JBW zRBXO XAXIGa90Z4r/RolF7wAwSbfr2cB7rfySrJOUvdZY afwlKZVw8PtSft2JCONrT5iz0+wGBClboLiaBOS10406 Y+qAC1

5hbkfdEC5JiK0++vxsDHqHdggtTLU9DP 36+KwWEPYf8HjW 2tCt8F4eucxT8GrfqZcw==

Hash of the sighature certificate (SHA-256):

72 46 B6 32 85 DF 35 B8
1B 08 66 51 6D EO FC 1D
DF 35 C7 DD F9 90 EA 6E
A2 C8 A0 ED A9 AB 32 49

| hereby confirm the above public keys for my electronic signature.

Date: Signature:

© EBICS SC Page: 237
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

11.5.2 Initialisation letter for HIA (example)

User Name Frank Sample

Date TT.MM.JJJJ

Time HH:MM:SS

Host ID BANKXXXX

Bank « name of the bank »

User ID XXXXXXXX

Partner ID Yyyyyyyy

Version Name of authentification signature (i.e. X***)

and name of encryption (i.e. E***)

Authentification Certificate - Type X***

MIIC6DCCAdCgAWIBAGIIMQ36MhxHh34wDQYJIKoZIhveNAQELBQAWKEOMCYGALUEAWWIRUJIQINQQVJIUTKVSSURIR
UJIQINVUOVSSUQ7Qz1GUjAeFWOXNEXMiMXMTAWMDdaFwOyMTEXMjQxMTAwWMDdaMCoxK DAmBgNVBAMMHOVCSU
NTUEFSVES5FUKIEXOVCSUNTVVNFUKIEOOMORIIwggEIMAOGCSgGSIb3DQEBAQUAA4IBD wWAwWggEKA0IBAQDL0oPal108X
J8L066vGQ9yzXm1NRyvjGxO4c/2GTNxnzAN9egbawaouw/OUyMZ0OPof6zRfcSmANhxgnxkE18FIpBUzxZDEiIDyOCITSHDm
knl7xJibk+zCdnHYE3QS5Kg7CeGXnZm30Gwl4UnOvihKONgPK8/DRXdZDdzrSkaOt+Xqhili8qUerGoAEt7HNrs2gWfnirEBk
sj3MjoOrTdiwdgW AuLEuk7CnA4gweqgsRjha/EaXrQbUB4KIHOS2NsJczh4HK oaoHdEiyFg8Asm4mFhgQmarpv59zzsnnsep+
ho0z59+7ETBaW5KgQZsRE3dbZVHhPPONsPkQs60LKacn5pAgMBAAG|EJAQMA4GA1UdDWEB/WQEAwIHgDANBgkghki
G9WOBAQsSFAAOCAQEAGW2nxKLtmzpENPmMA89tnSO 1IFE49y/aGPYpabWjveR+P1VMgIGNp7RWK+NVoZBBJuSBRgnmY
EbieQK2Mo/hShFVpMIiEyRB5mdkoRu58PHI4pvpVVUtpVLHjjw8SVKXm8nw6l+8laYwRAuUN63pOI7de3Hy0DsrBYDwcxMpr
8RSC514ZZmeKIGWW 1GqPzCUu74M+8egZhlOD2TFruhllITsGO3zeQKeUZ/uy8Y9PMfrjPrtwrrGgx105agdyKHSuY3FksIsVrT
VNOHRQWcMP84zdNL1F2PuZofnJ1zc+unctpg3flHaZ663fUKDMKIeKMO0oXfQ13Vugg4cHXS/DiaE9A==

Hash of the authentification certificate (SHA-256):

8E 98 E6 46 FC E4 E9 5E
3E 50 5B A2 DF AA 8D 89
81 38 AE 17 Bl 51 D3 12
87 96 F4 Cl FF BA E7 82

Encryption Certificate - Type E***

MIIC6DCCAdJCgAwIBAgIIbZ163qos4DQwWDQYJIKoZIhveNAQELBQAWKJEOMCYGALUEAWWIRUJIQINQQVIUTKVSSURSR
UJJIQINVUOVSSUQ7Qz1GUjAeFWOXN]EXMjMXMTAwMDhaFw0yMTExMjQxMTAwMDhaMCoxKDAMBgNVBAMMHOVCSU
NTUEFSVE5FUKIEXOVCSUNTVVNFUKIEOOM9RIIwggEIMAOGCSgGSIb3DQEBAQUAA4IBDWAWGGEKAOIBAQC3K5Lgvaé
kZizCIVgFTIMjwjLvPI6WIWW P4ei/eqABes|Z6Zv9z/EauplDZzKOulyluCwtyO7V36EICLZOVS7V20izpblllwVyYVi950/Q9Pznvz0
pOKvwquheXLFHTWdUATUAEKHT8wc2347j5VRfYCxjxk1Xgk8sgbnyXBwJxy/XkaaALXEfY/60jUz7ipljilB4AAHO3I+qgn5IsI1d7E
ZFCTNWGIHXRQIVLINI7sF5Q+MTqwZ2kYgReBzY6rDD7SMaOlcfopgDDkbyayohKnIxaSXUCpPLTKjHfi2ZPhCxwyZRTKG16
yljscbb4Asocmcsrg/SeHY/G1YERe6Xfa/AgMBAAGJEJAQMA4GA1UdDWEB/WQEAwWIFIDANBgkghkiGOWOBAQsFAAOCAQE
AfINiIIMS00104ms3qQTTEH6KJILICOUYRIMzTOOYpTXROOB4n3NHG/q1EIZU41UB8VcCrpWKWBrogx98oRNrFyOD1wG;j
B+ine5bxT71ncALEK7ZneUSE3anZKaQV6mzZbaJWRg/HSNTQ3G6MI1LZ8/ZFy5Bt+VnYIXG/tASV5U/jW0+67ceNs/j94zzrH9
auvL7h6PP6260znqGKKgxuX6+XMT21ff7jyG 3h+BwGW rtCwU1gmbZGW 3wR YTR6x9kCoiV+W I5ggW SpOo0ai70i7nBGKkIrLb
eOL3UFSvrfIEhpS9az45vn0ldFs+C8eYSgs+ZsBWNcuu8UalLtdS57UmlaR8Gg==

© EBICS SC Page: 238
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Hash of the encryption certificate (SHA-256):

E3 FA 11 A3 A4 40 CF 29
6D 25 1B 09 F4 1A 38 F7
33 E5 3A 96 FF DF 6C 5F
30 DF B2 9D 72 40 3E D7

| hereby confirm the above public keys for my electronic signature.

Date: Signature:

11.6 Generation of the transaction IDs

Transaction IDs are cryptographically-strong random numbers with a length of 128 bits. This
means that the likelihood of any two bank systems using the same transaction ID at the
same time is sufficiently small.

Transaction IDs are generated by cryptographic pseudo-random number generators (PRNG)
that have been initialised with a real random number (seed). The entropy of the seed should
be at least 100 bits.

© EBICS SC Page: 239
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

12 Appendix: Overview of selected EBICS details

12.1 Optional EBICS features

With EBICS, not all functions are defined as mandatory. Financial institutions that implement
the EBICS standard are free to support some administrative order types or functions within a
transaction sequence.

12.1.1 Optional administrative order types

The following EBICS order types CAN be supported by a financial institution (i.e. they are
optional):

= HAA (download retrievable services / BTF)
= HKD (download customer’s customer and subscriber data)

= HTD (download subscriber’s customer and subscriber data)

12.1.2 Optional functionalities in the course of the transaction

A financial institution or a customer product CAN support the following EBICS functionalities
(i.e. they are optional for both sides):

= Preliminary verification (see Chapters 3.6 and 5.3)

= Recovery (see Chapters 3.4 and 5.4).

12.2 EBICS bank parameters

With EBICS administrative order type HPD (see also Chapter 9.2), the subscriber can
receive information relating to the financial institution’s specific access (AccessParams) and
protocol parameters (ProtocolParams).

Access parameters (AccessParams):

Parameter name # Meaning Example

URL or IP address for electronic
access to the financial institution

It is possible to specify several URLSs.
Every URL with a valid_from-date
that has been reached (or if the
corresponding field is empty) is valid.
If a URL cannot be reached the
customer may use another valid
URL 1.0 | address. “www.die-bank.de”

Commencement of validity of URL/IP.
If not specified, the entry is valid with

URL@valid from 0..1 | immediate effect “2005-01-30T15:30:45.123Z"
Institute 1 Designation of the financial institution | “Die Bank"

HostID 0..1 | ID of the EBICS bank system “bank01

© EBICS SC Page: 240

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Protocol parameters (ProtocolParams):

coll. admin.
Parameter name # Meaning order types
Permitted versions (listed in each case) for EBICS
protocol (Protocol), encryption (Encryption)
signature (Signature) and identification and
Version 1 | authentication (Authentication) all
Recovery 0..1 | support for the recovery of transactions all

Support for preliminary verification. If this parameter is
set, the financial institution thereby ensures that it
checks at least a part of the data that is transmitted by
the subscriber within the framework of preliminary
verification. However, the financial institution is not
PrevValidation 0..1 | obliged to comprehensively verify the data uploads

Support of administrative order types HKD (download
customer data, Chapter 9.3) and HTD (download
ClientDataDownload 0..1 | subscriber data, Chapter 9.4). HKD, HTD

DownloadableOrder» Support of administrative order type HAA (download

Data 0..1 | retrievable BTF, Chapter 9.1). HAA

12.3 Security media of bank-technical keys

EBICS defines the following value categories for specification of the security medium of
(secret) bank-technical keys:

Security medium Setting
No specification 0000
Diskette 0ldd
Chipcard 02dd
Other removable storage medium | 03dd
Non-removable storage medium | 04dd

In the above table, “dd” represents any number combination that is specified individually by
each institution.

12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDs

The following table specifies the patterns of different IDs that are permitted in EBICS. In
addition, for each ID all of the XML types that are used in EBICS are listed to record
corresponding IDs.

ID Subscriber ID | Customer ID Order ID Host ID
/ ID of the
technical
subscriber
Pattern [a-zA-Z0- [a-zA-Z0- [A-Z]{1}[A-Z0-
© EBICS SC Page: 241

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

9,=){1,35} 9,=l{1,35} 9{3}
XML type Both of the PartnerIDType | OrderIDType HostIDType
defined in type
ebics_types_H UserIDType
005.xsd
© EBICS SC Page: 242

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

13 Appendix: Complete List of Administrative Order Type
Identifiers

The administrative order types in the following tables are explained in detail in Chapters:

4 Key management

8 Distributed electronic signature
10 HAC and

9 Other administrative order types).

BTD D Download of a file identified by a BTF structure Mandatory
BTU U Upload of a file identified by a BTF structure Mandatory
HAA D Download retrievable order types Optional
HAC D Download customer acknowledgement (XML-format) | Mandatory
Send amendment of the subscriber key for
HCA U identification and authentication and encryption Mandatory
Transmission of the subscriber key for ES,
HCS U identification and authentication and encryption Mandatory
HEV D Download supported EBICS versions Mandatory
Transmission of the subscriber key for identification
HIA U and authentication and encryption within the Mandatory
framework of subscriber initialisation
HKD D Download customer’s customer and subscriber data | Optional
HPB D Transfer the public bank key (download) Mandatory
HPD D Download bank parameters Mandatory
HTD D (I?ownload subscriber’s customer and subscriber Optional
ata
HVD D Retrieve EDS state Mandatory
HVE U Add EDSsignature Mandatory
HVS U Cancellation of orders in the EDS Mandatory
HVT D Retrieve EDS transaction details Mandatory
HVU D Download EDS overview Mandatory
HvVZ D Download EDS overview with additional informations | Mandatory
Transmission of all public keys (subscriber key, key | Optional
for identification and authentication and key for
H3K U . S T -
encryption) for initialisation in case of CA-issued
certificates
©EBICS SC Page: 243

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The concrete use of the administrative order types necessary for the electronic distributed
signature has to be agreed in the contract betweeen customer and his bank.

Further administrative order types for the key management:

o Customer’s public key for the ES
INI U Send password initialisation (see Appendix Chapter 14)
PUB U Send public key for signature Customer’s public key for the ES
verification (see Appendix Chapter 14)
Transmission of an ES file with a
SPR U Suspension of access authorisation signature for a dummy file that only
contains a space (mandatory)
©EBICS SC Page: 244

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14 Appendix: Signature process for the electronic signature

The utilised security processes must provide the electronic signature for the data that is to be
transmitted. In doing this, the following requirements profile is to be fulfilled:

= The signature may only be provided by the signatory so that the signatory cannot deny
the signature and so that it can be verified that the origin of any misuse can only be the
responsibility of the signatory.

= All potential recipients must be able to verify the correctness of the signature, wherein it
must be additionally guaranteed that this verification is also possible at a later point in
time (e.g. by legal entities).

= The signature must be in direct connection to the signed data contents so that it
simultaneously authenicates the corresponding data contents, allowing any potential
recipient (especially legal entities, even at a later point in time) to also verify the data
contents by means of the signature (data integrity verification).

= The signature solution must be applicable to any contents.

= From a performance viewpoint, the signature process must be useable on less-powerful
PCs with passable computing performance.

= The administration requirement for necessary storage of the data required for generation
of the signature, and especially verification of the signature (identifications) must be as
low as possible (simple key management).

= The concrete technical solution must be compatible with common operating systems that
may be used by the signatory and the recipient.

= The characters restricted to the operating system (CR, LF and Ctrl-Z) are not included in
the calculation of hash values of the AO0O5/A006 ES.

This requirements profile can only be fulfilled by the use of asymmetrical cryptographic
processes.

Use of the electronic signature is strongly recommended for all data transmissions that do
not serve purely for information acquisition, insofar as an alternative is not agreed in the
special arrangements for individual processes.

A detailed description of the mathematical processes and data structures used must be
published free of charge for each security process that is used. This description must be
sufficient to allow a functionally-compatible product to be created by any manufacturer.
Furthermore, a positive certificate of conformity for the process as a whole and in particular
the mathematical procedures utilised therein must be provided by an accreditation agency
specified by the German banking sector.

With due consideration for these requirements, it is mandatory that the electronic signature
process described in the following text is supported by the bank from 1% April 2002.

© EBICS SC Page: 245
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1 Version AO05/A006 of the electronic signature

With due consideration for the requirements in chapter 14, it is mandatory that the electronic
signature process described in the following text is supported by the bank.

For the signature processes A005 and A006 an interval of 2048 bit (minimum) and 4096 bit
(maximum) is defined for the key length.

14.1.1 Preliminary remarks and introduction

The following sub-chapters of chapter 14.1 contain the description of two new signature
mechanisms. The two signature mechanisms are both based on the signature schemes of
[PKCS1] and the usage of SHA-256 as algorithm for the hashing, but differentiated by the
usage of different methods of [PKCS1] for padding.

Since the completion of [A005] the naming for the signature mechanisms has been changed.
In contrast to [AOO5], where the two new signature mechanisms still have been named
A005_V1.5 and A00O5_PSS, the mechanisms will be called AO05 and A006 in future. The
following table shows the relationship between future names, the old names of [A005] and
the names used in [PKCS1]:

future name name in [A0O5] [PKCS1]

A005 A005_V1.5 EMSA-PKCS1-v1l_5 with SHA-256

A006 A005_PSS (with SHA-256 | EMSA-PSS with SHA-256 (with
hash value as input) SHA-256 hash value as input)

The following description of the two new signature mechanisms is based on the
corresponding paragraphs of the specification of SECCOS 6 [SECCOS6]. Both signature
mechanisms will be supported by a ZKA signature card, which is based on SECCOS 6 and
which contains the ZKA signature application [ZKASigAnw].

For the calculation of an electronic signature the ZKA signature application [ZKASigAnw]
offers two different keys, the so called AUT-key and the so called DS-key. Since banking
applications will in future use for the calculations of electronic signatures the AUT-key as well
as the DS-key, the following special conditions of SECCOS 6 for the usage of these keys
must be taken into account:

- For the AUT-key the signature will be calculated using the command INTERNAL
AUTHENTICATE. If used with the PSS padding of [PKSC1], the SECCOS smart card
will always calculate a hash value over the input data within the execution of the
command INTERNAL AUTHENTICATE. Since the application usually also calculates
a hash value over the actual message M before calling INTERNAL AUTHENTICATE,
this procedure will result in calculating the hash value twice, i. e. the value
hash(hash(M)) will be calculated.

- For this reason A006 will be defined in such a way that a prior calculated hash value
over the message M will be used as input for the signature mechanism rather than
the message M itself.

© EBICS SC Page: 246
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The asymmetric cryptographic algorithms supported by the SECCOS ICC are based on the
RSA algorithm with odd public key exponent ([RSA]).

In chapter 14.1.2 of this document, the principle of construction and the key components of
the public and private RSA keys according to annex F of [EMV CA], and [PKCS1] for odd
public exponents are explained.

A signature algorithm consists of an algorithm for signature generation and an inverse
algorithm for message recovery. The standard signature algorithm supported by the ZKA
SECCOS ICC is described in chapter 14.1.3 of this document.

The described signature algorithm based on the RSA algorithm is used by the ZKA SECCOS
ICC only in the context of signature mechanisms. A signature mechanism defines, in which
way a message M is transformed into a byte sequence which serves as input for the
signature generation by a signature algorithm. The byte sequence generated by a signature
mechanism is referred to as Digital Signature Input (DSI).

The ZKA SECCOS ICC supports several sighature mechanisms. In chapter 14.1.4 of this
document, the new so called AOO5 and A0O06 mechanisms are described which are both
based on PKCS #1 padding and the usage of SHA-256 as hash algorithm.

14.1.2 RSA

An RSA key pair consists of
e apublic key Pk and

e aprivate key Sk.

The public and private key consist of key components. RSA keys are also called
asymmetric keys.
For the generation of an RSA key pair with an odd public key exponent e, two different
primes p and g (prime factors) are used. e must be coprime to (p-1) and (g-1).
The corresponding private exponent d is defined by

e*d =1 mod kgV(p-1, g-1).

The primes p and g as well as the private exponent d have to be kept secret.
The product of the primes n = p*q is called modulus.
The public key Pk of the RSA key pair consists of the components

¢ modulus n and

e public exponent e.

The private key Sk of the RSA key pair may be represented by components in two ways
(see [PKCS1)):
1. Representation of Sk by the components:

¢ modulus n and

e private exponentd,

2. Representation of Sk by the components:

© EBICS SC Page: 247
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

e prime factor p,

e prime factor q,

e dp=d mod (p-1),

e dq=d mod (g-1) and
e qlnv=g?*modp.

Of the first representation, only the component d has to be kept secret. The components of
the second representation are called Chinese Remainder Theorem-Parameters (CRT
parameters). All CRT parameters have to be kept secret.

The SECCOS ICC shall support the RSA algorithm with any odd public key exponent. In
most cases one of the odd public key exponents 3 or F, = 2'5+1 is used.

In this document the following notation is used:
k denotes the bit length of the modulus n of an RSA key pair.
k is defined unambiguously by the equation 2¥* <= n < 2,
n is represented by a bit sequence:
N = bk bkt ... by, with bx<> 0.

The integer value of n is defined by the leftmost bit by being the most significant bit and the
rightmost bit b, being the least significant bit of the binary representation of n.

For k there exist unique digits N >= 1 and 8 >=r >=1 with k = 8*(N-1) + r such that n may
also be represented by the bit sequence:

n=>bybrs... b1 bs*(N.l) bs*(N.2)+1 ... bg ... b1.

If r = 8, n may be represented as a sequence of N byte:
n =Bn Byt ... By, with By <> '00'.

If r <8, the bit sequence by b1 ... b1 bexn-1) ... Dg«n-2)+1 ... Dg ... b1 8-r leading binary 0's are
added:
n=0..0 br br.l b1 bs*(N.l) bs*(N.2)+1 bs bl.

In this way n may be represented as a byte sequence
n =Bx Byt ... By, with By <> '00'.

The integer value of n is not changed by the introduction of leading 0's in the binary
representation of n. Therefore the integer value of n is the same, whether n is represented by
a sequence of N byte or by a sequence of k bit.

N is the byte length of n.

N is defined unambiguously by the equation 28™N-Y<=n < 28N

14.1.3 Standard digital signature algorithm

© EBICS SC Page: 248
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.3.1 Standard signing function

Let Sk be a private RSA key consisting of the modulus n and the private key exponent d or
consisting of CRT parameters. The associated public RSA key Pk consists of the modulus n
and the public key exponent e.
Then a binary coded byte sequence ¥, its integer value between 0 and n-1 resulting from the
binary representation of x, may be signed with Sk. Then x may be represented as a byte
sequence with a length of N byte and as a bit sequence with a length of k bit. The k-th bit of
the representing byte or bit sequence may have the value 1, but does not have to. If existent,
the bit bg« ... brs1 Of the representing byte sequence have the value O.
The following notation is used for the generation of a signature with the private key Sk
consisting of n and d:

sign(Sk)[x] = x4 mod n

If the private key Sk is represented by CRT parameters, sign(Sk)[x] = x® mod n shall be
computed as follows:
sign(Sk)[X] = s2 + h*q

where s; and h shall be computed as follows:
s1 = x% mod p,

Sz = x%mod q,

h = glnv*(s: - s2) mod p.

The exponentiations x¢ mod n, x® mod p and x% mod q shall be performed with the integer
value resulting from the binary representation of x.

The result of the signature generation is a byte sequence s resulting from the binary
representation of the integer value of the exponentiation x¢ mod n or from the binary
representation of the integer value of s, + h*q. The integer value is between 0 and n-1. Then
s may be represented as a byte sequence with a length of N byte and as a bit sequence with
a length of k bit. The k-th bit of the representing byte or bit sequence may have the value 1,
but does not have to. If existent, the bit bg« ... br+1 Of the representing byte sequence have
the value 0.

14.1.3.2 Standard recovery function

Let Pk be a public RSA key consisting of the modulus n and the public key exponent e.
The plaintext may be recovered using Pk from a binary coded byte sequence s, if the integer
value, resulting from the binary representation of s, is between 0 and n-1. Then s may be
represented as a byte sequence with a length of N byte and as a bit sequence with a length
of k bit. The k™ bit of the representing byte or bit sequence may have the value 1, but does
not have to. If existent, the bit bg« ... b1 Of the representing byte sequence have the value
0.
The following notation is used for the plaintext recovery:

recover(Pk)[s] = s®* mod n

© EBICS SC Page: 249
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

The exponentiation s® mod n shall be performed with the integer value resulting from the
binary representation of s.
The result of the plaintext recovery is an integer value between 0 and n-1. It may therefore
be represented as a byte sequence with a length of N byte and as a bit sequence with a
length of k bit. The k™ bit of the representing byte or bit sequence may have the value 1, but
does not have to. If existent, the bit bg« ... bk+1 Of the representing byte sequence have the
value 0.
It is valid for a RSA key pair Pk and Sk:

recover(Pk)[sign(Sk)[X]] = x

14.1.4 Signature Mechanisms A005 and A006

The digital signature mechanisms A005 and A006 are both based on the industry standard
[PKCS1] using the hash algorithm SHA-256. They are both signature mechanisms without
message recovery.
A hash algorithm maps bit sequences of arbitrary length (input bit sequences) to byte
sequences of a fixed length, determined by the Hash algorithm. The result of the execution of
a Hash algorithm to a bit sequence is defined as hash value.
The hash algorithm SHA-256 is specified in [FIPS H2]. SHA-256 maps input bit sequences of
arbitrary length to byte sequences of 32 byte length. The padding of input bit sequences to a
length being a multiple of 64 byte is part of the hash algorithm. The padding even is applied if
the input bit sequence already has a length that is a multiple of 64 byte.
SHA-256 processes the input bit sequences in blocks of 64 byte length.
The hash value of a bit sequence x under the hash algorithm SHA-256 is referred to as
follows:

SHA-256(x)

For building the value of the Digital Signature Input (DSI) out of the hash value [PKCS1]
defines two different encoding methods, called EMSA-PKCS1-vl 5 and EMSA-PSS.
Therefore two different digital signature mechanisms will be defined based on these two
encoding methods. The different mechanisms will be denoted A005 and A006.

14.1.4.1 Signature Mechanism A005

For the computation and verification of a digital signature with the signature mechanism
described in [PKCS1] using the encoding method EMSA-PKCS1-v1 5, the following points
have to be indicated:

¢ the hash algorithm HASH to be used,

e the byte length H of the generated hash values,
¢ the signature algorithm to be used and

¢ the maximal byte length N of the generated DSI to be allowed as input for the
signature algorithm.

© EBICS SC Page: 250
Status: Final V 3.0.2

EBICS specification

EBICS detailed concept, Version 3.0.2

The digital signature mechanism AQ05 is identical to EMSA-PKCS1-v1_5 using the hash
algorithm SHA-256. The byte length H of the hash value is 32.

Within ZKA smart cards RSA is used as signature algorithm. Therefore N is the byte length
of the modulus n of the applied RSA key.

In the following, digital signature generation and verification on the basis of the digital
signature mechanism AOO5 are described. The used abbreviations are defined in chapter

14.1.2.

14.1.4.1.1 Digital signature generation

According [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be
performed for the computation of a signature for message M with bit length m.

1. The hash value HASH(M) of the byte length H shall be computed. In the case of A005
SHA-256(M) with a length of 32 bytes.

2. The DSI for the signature algorithm shall be generated.

The DSl is a sequence of N-1 byte constructed as follows:

Denotation Byte length |Value

Block type 1 '01'

Padding field N-3-D 'FF..FF'

Separator 1 '00'

Digest-Info D BER-TLV coded data object with OID and
parameters of the hash algorithm and with the hash
value HASH(M)

Using SHA-256 the Digest-Info is structured as follows:

Tag | Length |Value Description
(in byte)
'30' '31' Tag and length of SEQUENCE
'30' '0D' Tag and length of SEQUENCE
'06' '09' |'6086 480165 |OID of the SHA-256 (2168401 1013421)
03 04 02 01"
'05' '00" |- TLV coding of ZERO
'04' ‘20" XX XX hash value

The byte length D of the Digest-info has the value 51. The padding field has a length
of N-54 byte. Since N has at least the value 128 (for the minimal key length of 1024
bits), it must be padded at least with 74 byte 'FF'.

3. A signature shall be computed using the DSI with the standard algorithm for the
signature generation described in section 14.1.3.1.

© EBICS SC

Page: 251
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Since the DSl is a byte sequence of length N-1, the integer value resulting from the
binary representation of the DSI is always less than the value of the modulus n.

The signature may be represented as a byte sequence with the byte length N. In the
representation of the modulus n as a byte sequence the bit by has the value 1 and the
bit be«n bewn-1 ... bker have, if existent, the value 0. In the representation of the signature
as a byte sequence the bit bgw b1 ... brsa therefore also shall have the value O.

14.1.4.1.2 Digital signature verification

According to [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be
performed for the verification of a signature. The signature to be verified and the message M'
require to be available as byte sequences.

1. The signature must be represented as a byte sequence with the byte length N. In the
representation of the signature as a byte sequence the bit bgwn bgsn.1 ... bis1 ,if eXistent,
shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be
less than n. If this is not the case, the signature shall be rejected.

2. The standard algorithm for plaintext recovery described in section 14.1.3.1 shall be
applied to the signature. The result has to be represented as a byte sequence of N-1
byte length. If this is not the case, the signature shall be rejected.

3. A DSI' with a length of N-1 byte shall be generated from the message M' as described
in steps 1. and 2. of section 14.1.4.1.1.

The DSI' shall be compared with the plaintext recovered in step 2. If the values match, the
verification of the signature was successful. Otherwise the signature shall be rejected.

14.1.4.1.3 Notation
The following notation is used for the computation of a signature for the message M with the
signature mechanism A005 and the private RSA key Sk:

S = SigNaoos(Sk)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism A005 and the public RSA key P«:
verifyaoos(Pk)[s,M].

14.1.4.2 Signature mechanism A006

For the computation and verification of a digital signature with the signature mechanism
described in [PKCS1] using the encoding method EMSA-PSS, he following points have to be
indicated:

e the hash algorithm HASH to be used,

e the byte length H of the generated hash values,

© EBICS SC Page: 252
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

e the byte length S of the salt to be used,
e the mask generation function to used,
e the signature algorithm to be used,

e the maximal bit length k of the generated DSI to be allowed as input for the signature
algorithm and

e the maximal byte length N of the generated DSI to be allowed as input for the
signature algorithm.

The digital signature mechanism A006 is based on EMSA-PSS using the hash algorithm
SHA-256. The byte length H of the hash value is 32.

The length S of the salt is defined by the used hash algorithm, i.e. the length S of the salt
shall be the byte length H of the hash value.

For AOO6 only the mask generation function MGF1 as described in [PKCS1] will be used.
Notation: k is length of the modulus n (in bits) of the applied RSA key. The length of the DSI
(in bits) is k — 1 and will be denoted as emBits. The length of the modulus n (in bytes) is
denoted as N. The length of the DSI (in bytes) is denoted as emLen.

14.1.4.2.1 Mask generation function MGF1

The mechanism described in [PKCS1], sections 8.1 and 9.1 uses a mask generation function
described in [PKCS1], section B.2.

MGF1 is a mask generation function based on a hash algorithm HASH, which calculates
hash values with the byte length H. MGF1 creates a byte sequence of a given length
maskLen from a given input value (seed) mgfSeed as described in the following:

1. Let T be an empty byte sequence.
2. For a counter from O to [maskLen / H] - 1, do the following:
a. Convert the counter to a byte sequence C with the length of 4 bytes.
b. Calculate the hash value HASH (mgfSeed | C) and concatenate this to the

byte sequence T:
T =T | HASH(mgfSeed | C)

3. The result MGF1(mfgSeed, maskLen) will be the leftmost maskLen bytes of the byte
sequence T.

Note that [maskLen / H]defines the smallest integer larger than or equal to (maskLen / H).

© EBICS SC Page: 253
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.4.2.2 Digital signature generation according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.1 and 9.1.1 the following
steps shall be performed for the computation of a signature for message M with bit length m.

1.

The hash value HASH(M) of the byte length H shall be computed. If EMSA-PSS will
be used as basis for the signature mechanism A006, the hash value SHA-256(M) with
the length of 32 bytes will be calculated.

The input value DSI for the signature algorithm shall be generated as follows:
Generate a random number of S bytes to be used as salt.
Build the message M' as follows:
M' ='00 00 00 00 00 00 00 00' | HASH(M) | salt
Compute over M' the hash value HASH(M') of the byte length H.

Build a padding string PS with a length of emLen — H — S — 2 bytes consisting of '00'
bytes.

Let DB = PS | '01' | salt; DB is a byte sequence of the length emLen — H — 1.

Let dbMask = MGF(HASH(M"), emLen — H — 1) the result of the mask generation
function. If EMSA-PSS is used as basis for A006, the function MGF1 as described in
14.1.4.2.1 will be used.

Let maskedDB = DB @ dbMask.
Set the leftmost 8*emLen — emBits bits of the leftmost byte in maskedDB to zero.
Let DSI = maskedDB | HASH(M') | 'BC'.

A signature shall be computed using the byte sequence DSI as input to the standard
signing function described in 14.1.3.1.

It has to be regarded, that the DSl is represented as a sequence of emLen byte. The
integer value resulting from the binary representation of the DSI is always less than
the value of the modulus n, since the bit length emBits of the DSl is less than the bit
length of the modulus.

The signature may be represented as a byte sequence with the byte length N. In the
representation of the modulus n as a byte sequence the bit by has the value 1 and the
bit bewn bewn-1 ... bier have, if present, the value 0. In the representation of the signature
as a byte sequence the bit bgw bg-1 ... bisa therefore also shall have the value 0.

© EBICS SC Page: 254

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.4.2.3 Digital signatur verification according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.2 and 9.1.2, the following
steps shall be performed for the verification of a signature. The signature to be verified and
the message M must to be available as byte sequences.

1.

The signature must be represented as a byte sequence with the byte length N. In the
representation of the signature as a byte sequence the bit bgwn bgsn.1 ... b ,if present,
shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be
less than n. If this is not the case, the signature shall be rejected.

The standard function for plaintext recovery shall be applied as described in 14.1.3.2
to the signature. The result has to be represented as a byte sequence of emLen byte
length. If this is not the case, the signature shall be rejected.

The recovered plaintext shall be checked as follows:
The hash value HASH(M) of the byte length H shall be computed.

The least significant byte of the recovered plaintext shall have the value 'BC'. If this is
not the case, the signature shall be rejected.

Let maskedDB be the leftmost emLen — H — 1 bytes of the recovered plaintext and let
HM' be the next H bytes of the recovered plaintext.

If the leftmost 8*emLen — emBits bits of the most significant byte of maskedDB are
not all equal to zero, the signature shall be rejected.

Let dbMask = MGF (HM', emLen — H — 1), using the function MGF1.
Let DB = maskedDB @& dbMask.
Set the leftmost 8*emLen — emBits bits of the leftmost byte in DB to zero.

If the emLen — H — S — 2 leftmost bytes of DB are not all equal to '00' or if the byte at
the position emLen — H — S — 1 does not have the value '01', the signature shall be
rejected.

Let salt be the rightmost S bytes of DB.
Let
M' ='00 00 00 00 00 00 00 00' | HASH(M) | salt

and compute the hash value HASH(M") of the byte length H.

If HM' = HASH(M") the verification of the signature was successful. Otherwise the signature
shall be rejected.

© EBICS SC Page: 255

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.4.2.4 Notation for EMSA-PSS

The following notation is used for the computation of a signature for the message M with the
signature mechanism according to [PKCS1] using EMSA-PSS and the private RSA key Sk:

S = Signemsa-pss(Sk)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism according to [PKCS1] using EMSA-PSS and the public RSA key Pk:
verifyevsa-pss(Pk)[s,M].

14.1.4.2.5Digital signature generation according to AO06

As already mentioned banking applications will also use the AUT-key for the generation of a
signature, which was formerly intended only for authentication purposes. Using the command
INTERNAL AUTHENTICATE with the AUT-key and the signature mechanism EMSA-PSS
the SECCOS smart card will always calculate internally a hash value over the input data of
the command. Since banking applications have to calculate signatures over messages which
are usually quite long, these messages cannot be given directly as input data with the
command INTERNAL AUTHENTICATE to the SECCOS smart card. For this reason the
banking application will also calculate a hash value over the message. This hash value will
be the input data of the command INTERNAL AUTHENTICATE. Hence, using the AUT-key
and EMSA-PSS, the hash value will be calculated twice. For this reason the signature
mechanism A006 will be defined as follows.

To calculate a signature s over a message M with the private key Sk using the signature
mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then calculate the signature s = signemsa-pss(S«)[HM].

14.1.4.2.6 Digital signature verification according to A0O06

To verify a signature s over a message M with the public key Pk using the signature
mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then verify the signature using verifyevsa-pss(Pk)[s,HM].

14.1.4.2.7 Notation for AOO6
The following notation is used for the computation of a signature for the message M with the
signature mechanism A006 and the private RSA key Sk:

S = signaoos(Sk)[M].

The following notation is used for the verification of a signature s for the message M with the
signature mechanism A006 and the public RSA key P«::
Verifonoe(P K) [S, M] .

© EBICS SC Page: 256
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.5 References

[EMV CA]

[FIPS H2]

[PKCS1]

[RSA]

[SECCOS6]

[ZKASigAnw]

Europay International, MasterCard International and Visa International,
Integrated Circuit Card Specifications for Payment Systems, Annexes, Version
3.1.1, 31.05.1998

FIPS 180-2, Secure Hash Signature Standard, Federal Information Processing
Standards Publication 180-2, U. S. Department of Commerce / N.L.S.T.,
National Technical Information Service, August 2002

PKCS #1: RSA Encryption Standard, Version 2.1, 14.06.2002

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public key cryptosystems, Communications of the ACM,
vol. 21, n. 2, 1978, 120-126

Interface Specifications for the SECCOS ICC, Secure Chip Card Operating
System (SECCOS), Version 6.1, 19.05.2006 (with revisions as on October
16", 2006)

Interface Specifications for the SECCOS ICC, Digital Signature Application for
SECCOS 6, Version 1.1, 25.05.2007

© EBICS SC

Page: 257
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

14.1.6 XML structure of signature versions A0O05/A006

The following diagram illustrates the structure of the bank-technical electronic signature (ES)
in structured form:

—Fesig:ﬁignatureversiun |

‘Yersion af the algorithm used For
signature creation,

—Fe&ig:ﬁignatureh‘alue |

Drigital signature.

|
|
|
|
|
OrderSignatureData [}]—(—--—jg— I
|
|
|
|
|

Drigital sigrature [aither
autotizing an order or applied
For transpartation], structured
Forrnat,

Custorner ID of the signer,

. E~e~5~.ig:Us=£=rII]

User IC,

Diagram 100: OrderSignatureData — structured electronic signature

OderSignatureData may only be transmitted as part of an XML document with root
element UserSignatureData. Detailed information and illustrations see chapter 3.5.3 .

With the intention to utilize the ES in structured form outside of EBICS, all necessary data
structures have been defined in an independent XSD file (ebics_signature_S002.xsd) which
can be downloaded from https://www.ebics.org/en/ebics-schema.

For the transport of the public signature key the format SignaturePubKeyInfoType IS
used (see chapter 4.2).

© EBICS SC Page: 258
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

15 Appendix: Standards and references

The EBICS detailed concept refers to a number of processes, algorithms and format

stipulations.

The associated standard document identifications and links to the referenced documents are

listed in the following section.

Standard

Standard | Characteristics | . e L. Reference
identification
Multi-bank
capable . : ice- -
EBICS interface for HOO5 https://www.ebics.org/en/ebics-schema (XML
Schema)
Internet-based
communication
Universal
2IP . RFC 1950, http://www.ietf.org/rfc/rfc1950.txt
compression :
. RFC 1951 http://www.ietf.org/rfc/rfc1951 .txt
algorithm
Coding format
g RFC 1421, http://www.ietf.org/rfc/rfc1421.txt
base64 for textual byte :
RFC 2045 http://www.ietf.org/rfc/rfc2045.txt
code transport
UTF-8 %?ﬁr;\?c]:)odr;n i RFC 3629 http:// ietf.org/rfc/rfc3629
(ISO 10646) ttp://www.ietf.org/rfc/rfc Axt
characters
Internet
HTTP 1.1 | application RFC 2616 http://www.ietf.org/rfc/rfc2616.txt
protocol
RFC 2246,
RFEC 3268 http://WWW.ietf.orq/rfc/rfc2246.txt
s Transport layer | (+AES), http://WWW.!etf.orq/rfc/rfc3268.txt
encryption REC 2818 http://www.ietf.org/rfc/rfc2818.txt
(HTTP via
TLS)
Internet
TCP transmission RFC 793 http://www.ietf.org/rfc/rfc793.txt
protocol
Internet network]
IP(v4) RFC 791 http://www.ietf.org/rfc/rfc791.txt
protocol
Hierarchical
XML documentation | (W3C-Rec.) http://www.w3.org/TR/REC-xml/
language
Process for
XML digital signature http://www.ietf.org/rfc/rfc3275.txt
. RFC 3275 :
signature | of XML http://www.w3.org/TR/xmldsig-core/
documents
© EBICS SC Page: 259

Status: Final V 3.0.2

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.w3.org/TR/REC-xml/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmldsig-core/

EBICS specification
EBICS detailed concept, Version 3.0.2

Format and

profile for PKI _ _
X.509v3 certification RFC 5280 http://www.ietf.org/rfc/rfc5280.txt

data

Format for
Country count RFC 1766, http://www.ietf.org/rfc/rfc1766.txt

ry

codes L ISO 639

abbreviations
Time Format for date | ISO 8601 http://www.iso.org/iso/en/CatalogueDetail»
stamp & time stamp (2004) Page.CatalogueDetail?CSNUMBER=40874

RFC 6234, https://tools.ietf.org/html/rfc6234

SHA-256 | Hash algorithm | FIPS 180-4 https://nvipubs.nist.qov/nistpubs/FIPS/NIST.FIPS.180-
(SHA gen.) 4.pdf

Symmetrical _ o o _
AES encryption FIPS 197 Egg://g?rc.nlst.qov/pubI|cat|0ns/f|ps/f|pslg7/» fips-
algorithm =200
© EBICS SC Page: 260

Status: Final V 3.0.2

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
https://tools.ietf.org/html/rfc6234
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

EBICS specification
EBICS detailed concept, Version 3.0.2

16 Appendix: Glossary

Administrative
Order type

Three-figure alphanumeric code that identifies a type of administrative
EBICS order.

AES

“Advanced Encryption Standard”: a symmetrical encryption algorithm
that is intended to replace DES. In the EBICS context, AES is used for
TLS as well as for the encryption of bank-technical order data (in
accordance with RFC 3268).

Bank system

Components within the responsibility sphere of the financial institution
that are involved in the implementation of an EBICS transaction. This
includes both the bank-technical target system and the HTTP server(s)
that receive the EBICS message and forward it to the bank-technical
target system.

Bank-technical

Subscriber’s ES of signature class “E”, “A” or “B”, via which the

electronic processing of an order is authorised.

signature

Bank-technical RSA key pair whose private key is used for configuring the bank-
key technical electronic signature and whose public key is used for its

(public/private)

verification.

Bank-technical
order data

Data that is required for the processing of an order. The format of this
data depends on the BTF odentifier and/or administrative order type.
The majority of the data formats that are used in EBICS have already
been defined. The data formats of the administrative order types that
have been newly defined for EBICS (such as e.g. Distributed
Electronic Signature order types) are defined in EBICS by means of an
XML schema.

The order data of an order is transparently embedded (in compressed,

encrypted form) in EBICS messages.

Bank-technical
target system

Component within the responsibility sphere of the financial institution
that is responsible for the administration of customers/subscribers and
the processing of bank-technical orders. Within the framework of the
EBICS specification, the bank-technical target system can be viewed
as a “secure black box”.

base64

Coding algorithm and format in accordance with RFCs 1421 & 2045.
The result of a base64 coding run can be completely represented in
ASCII.

BTF identifier

Set of information which defines the kind of order (primarily defined by
the XML structure “service”).

CA Abbreviation for certificate authority
Certificate If the term “certificate” is used in the EBICS specification documents
the public key format x.509 is meant.
Keys certified by a CA are called CA-issued certificates.
In the EBICS documents the hash values of keys are understood as
the composition of the hash value of the certificate.
Client Communications unit that sends EBICS requests and receives EBICS
©EBICS SC Page: 261

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

responses. See also “Customer system”.

Control data

Data in an EBICS message that is required for controlling the flow of
an EBICS transaction. This is data for authentication of the subscriber
by the bank system, data for identification of the next transaction step
that is to be carried out, or technical return codes, or order parameters,
or data for preliminary verification or bank-technical return codes.

Customer

Organisational unit (company or private person) that concludes a
contract with the financial institution. In this contract it will be agreed as
to which business transactions the customer will conduct with the
financial institution, which accounts are concerned, which of the
customer’s subscribers work with the system and the authorisations
that these subscribers will possess.

Customer system

Components that are used by subscribers to upload orders to the
financial institution and to obtain information on orders or subscriber
accounts from the financial institution.

Distributed bank-
technical
signature

See “Electronic Distributed Signature”.

Download
transaction

EBICS transaction for transmission of a download order. The
transaction phases of a download transaction are: transaction
initialisation, data transfer, acknowledgement of the download data.

EBICS message

EBICS request from a subscriber or EBICS response from the financial
institution. EBICS messages are mainly composed of control data, the
identification and authentication signature and bank-technical data.

EBICS request

Request from a subscriber in XML format that has been defined in
EBICS.

EBICS response

Response from the financial institution in XML format that has been
defined in EBICS.

EBICS transaction

Sequential flow of EBICS transaction phases that are necessary to
transmit an order to the bank-technical target system. EBICS
transactions can be upload or download transactions.

EBICS transaction
administration

Bank system component that is responsible for the administration of
EBICS transactions.

EBICS transaction
phase

Sequence of connected EBICS transaction steps. A differentiation is
drawn in EBICS between the following transaction phases:
Transaction initialisation (“initialisation”), data transfer (“transfer”) and
acknowledgement (“receipt”) .

EBICS transaction
step

Pair comprising an EBICS request and the associated EBICS
response. An EBICS request is always initiated by the customer
system.

EDS See “Electronic Distributed Signature”.

Electronic A process where in bank-technical electronic signatures can be

Distributed supplied for a particular order, irrespective of time or place. See

Signature Chapter 8 for details. The abbreviation is “EDS”. In HAC-Codes the
previous abbreviation VEU remains.

Electronic Voluntary signature of the order data in an upload order by a

©EBICS SC Page: 262

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

signature (ES)

subscriber with which the corresponding order can be submitted or
authorised, or also a financial institution signature for download data.
In EBICS, ES’s are used in accordance with the Appendix (Chapter
14) that are at least configured in accordance with process A005

Encryption key
(public/private)

RSA key pair whose public key is used by the communications
partners for encryption of the symmetrical transaction key and whose
private key is used by owners for decrypting the same transaction key.

ES

See “Electronic signature”.

ES sighature key

See “Bank-technical key (public/private)”.

Host ID

EBICS host ID for the identification of the EBICS bank computer
system in every request message of the customer system..The
financial institution communicates the EBICS host ID together with the
URL for the bank access to the customer.

Identification and
authentication key
(public/private)

RSA key pair whose private key is used for configuring the
identification and authentication signature and whose public key is
used for its verification.

Identification and
authentication
signature

Digital signature to ensure the authenticity of the control data in an
EBICS message. XML Signature is used as a sighature format.

Key management

Component of the bank system that is responsible for the assignment
of public keys to subscribers and that controls access to the keys it
administrates.

Order Bank-technical or system-related business transaction whose type is
identified via BTF identifiers
Order data See “Bank-technical order data”

Order parameters

Additional order parameters that the client transmits to the server in
the first transaction step. See Chapter 3.11.

Order ID

Unambiguous order ID assigned by the bank server and submitted to
the client system in the response of an upload transaction.

It especially serves the synchronizing of order data and electronic
signatures in a second upload.

The application is to ensure the allocation of unambiguous order IDs
per each customer ID and per BTF identifiers.

Structure of a 4-digit order ID:

1st position: Alphabetic character (A—Z), selectable freely

2nd to 4th position: Alphanumerical characters (A—Z or 0-9) in
ascending order

OrderData

See “Order type” and “BTF identifier”.

Partner

See “Customer”

Segmentation

Division of the data volume of the order data after compression,
encryption and base64-coding into segments with a size of max. 1 MB.
See also Chapter 7.

Server

Communications unit that receives EBICS requests and sends EBICS
responses. See also “Bank system”.

Signature class

Relates to subscriber’s ES’s.

EBICS defines the following signature classes: Individual signature
(type “E“), First signature (type “A“), Second signature (type “B“),
Transport signature (type “T*). See Chapter 3.5.1 for details.

© EBICS SC

Page: 263
Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

Subscriber

Human users (“non-technical subscribers”) or a technical system
(“technical subscriber”) that is/are assigned to a customer. Is identified
by the combination of subscriber ID and customer ID.

The technical subscriber serves for the data exchange between
customer and financial institution. It must not be put on the same level
as a technical ID for a service provider.

Subscriber
initialisation

A process according to which the public subscriber keys are
transmitted to the financial institution and are then activated by the
financial institution. After successful execution of subscriber
initialisation, subscriber are set in the bank system to the state
“‘Ready”.

TLS

“Transport Layer Security”: Protocol in accordance with RFCs 2246 &
3268 for the cryptographic security of messages that use TCP/IP as a
transmission protocol. In the EBICS context, TLS is used for the
transport encryption of HTTP messages (HTTPS).

Transaction

See “EBICS transaction”.

Transaction key

Symmetrical key that is used within the EBICS transaction for the
encryption of bank-technical data.

Transaction
management

See “EBICS transaction management”.

Transaction phase

See “EBICS transaction phase”.

Transaction step

See “EBICS transaction step”.

Transport
sighature

Subscriber’s ES of signature class “T” via which the order is submitted
(but its processing is not authorised).

Trust anchor

In the context of certification verification, a trust anchor (point of trust)
is a certificate that is considered trustworthy. This is usually a
certificate from a CA (Certification Authority).

Upload
transaction

EBICS transaction for transmission of an upload order. The transaction
phases of an upload transaction are: Transaction initialisation, data
transfer.

UTF-8 “Unicode Transformation Format®, a character encoding standard
according to RFC 3629.

ZIP Loss-free compression algorithm according to RFCs 1950 and 1951.

©EBICS SC Page: 264

Status: Final V 3.0.2

EBICS specification
EBICS detailed concept, Version 3.0.2

17 Table of diagrams

Diagram 1: XML schema symbols

Diagram 2 Nesting of activities

Diagram 3: Root structure of the EBICS protocol

Diagram 4: XML structures UserSignatureData for the ES’s of an order (in structured
format)

Diagram 5: X509DataType

Diagram 6: OrderParams

Diagram 7: Example of the sequence of an EBICS transaction for an upload order
Diagram 8: Example of the sequence of an EBICS transaction for a download order
Diagram 9: Definition of the XML schema type AuthenticationPubKeyinfoType
Diagram 10: Definition of the XML schema type SignaturePubKeyInfoType
Diagram 11: Definition of the XML schema type EncryptionPubKeyInfoType

Diagram 12: Necessary steps prior to actual processing of business transactions via
EBICS (using INI / HIA)

Diagram 13: Process example: Subscriber initialisation followed by download and
verification of the bank keys (using INI / HIA)

Diagram 14: Processing of an INI request at the bank’s end
Diagram 15: Processing an HIA request at the bank’s end
Diagram 16: State transition diagram for subscribers

Diagram 17: Definition of the XML schema element SignaturePubKeyOrderData for
INI order data (identical to PUB, see respective chapter)

Diagram 18: Definition of the XML schema element HIARequestOrderData for HIA
order data

Diagram 19: EBICS request for administrative order type INI
Diagram 20: EBICS response for administrative order type INI
Diagram 21: EBICS request for administrative order type HIA
Diagram 22: EBICS response for administrative order type HIA

Diagram 23: Definition of the XML schema element H3KRequestOrderData for H3K
order data

Diagram 24: Processing of an HPB request at the bank’s end

Diagram 25: Definition of the XML schema element HPBRequestOrderData for HPB
order data

© EBICS SC Page: 265
Status: Final V 3.0.2

12
13
20

26
30
32
34
35
39
39
39

41

42
46
49
52

53

53
55
56
57
58

60
63

65

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 26: EBICS request for administrative order type HPB

Diagram 27: EBICS response for administrative order type HPB

Diagram 28: Changing the bank-technical subscriber key via PUB
Diagram 29: Changing the authentication key and encryption key via HCA

Diagram 30: Changing the bank-technical subscriber key, the authentication key, and
encryption key via HCS

Diagram 31: Definition of the XML schema element SignaturePubKeyOrderData for
PUB order data (identical to INI, see own chapter)

Diagram 32: Definition of the XML schema element HCARequestOrderData for HCA
order data

Diagram 33: Definition of the XML schema element HCSRequestOrderData for HCS
order data

Diagram 34: Error-free sequence of an upload transaction

Diagram 35: EBICS request for transaction initialisation for a business transaction
format upload

Diagram 36: XML document that contains the ES’s of the signatory of the upload
order

Diagram 37: EBICS response for transaction initialisation for the upload order

Diagram 38: EBICS request for transmission of the last order data segment of a
business transaction format order

Diagram 39: EBICS response for transmission of the last order data segment for a
business transaction form order

Diagram 40: BTF structure for upload (using restricted service type)

Diagram 41: Detailed description of the process step “Authentication check of the
EBICS request”

Diagram 42: Detailed description of the process step “User related order checks”

Diagram 43: Detailed description of the process step “Creation of an EBICS
transaction”

Diagram 44: Processing the EBICS request from transaction initialisation
Diagram 45: Detailed description of the process step “EBICS transaction verification”

Diagram 46: Processing an EBICS request for transmission of an order data segment
(part 1)

Diagram 47: Processing an EBICS request for transmission of an order data segment
(part 2)

Diagram 48: Termination of the recovery of an upload transaction due to the
maximum number of recovery attempts being exceeded

© EBICS SC Page: 266
Status: Final V 3.0.2

67
68
72
73

74

75

75

76
87

90

91
92

93

94
96

105
106

107
108
111

112

113

116

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 49: Recovery of an upload transaction with explicit synchronisation between
customer system and bank system

Diagram 50: EBICS response with technical error EBICS_TX_RECOVERY_SYNC
Diagram 51: Error-free sequence of a download transaction

Diagram 52: EBICS request for transaction initialisation for download of an end of
period statement (MT940)

Diagram 53: EBICS response for transaction initialisation for the download of an end
of period statement (MT940)

Diagram 54: EBICS request for transmission of the next order data segment for the
download of an end of period statement (MT940)

Diagram 55: EBICS response for transmission of the last order data segment for the
download of an end of period statement (MT940)

Diagram 56: EBICS request for the acknowledgement of download data
Diagram 57: EBICS response for the acknowledgement of download data
Diagram 58: BTF structure for download (using restricted service type)

Diagram 59: Processing the EBICS request of the initialisation phase of a download
transaction

Diagram 60: Detailed description of the process step “Download transaction
verification”

Diagram 61: Processing an EBICS request for requesting a order data segment

Diagram 62: Processing of an EBICS request for acknowledgement within the
framework of a download transaction

Diagram 63: Termination of the recovery of a download transaction due to the
maximum number of recovery attempts being exceeded

Diagram 64: Recovery of a download transaction with explicit synchronisation
between customer system and bank system

Diagram 65: EBICS response with technical error EBICS_TX RECOVERY_SYNC
Diagram 66: Flow diagram for EDS

Diagram 67: HVUOrderParams

Diagram 68: HVUResponseOrderData

Diagram 69: HVUSigningInfoType (to Signinginfo)

Diagram 70: SignerinfoType (to Signerinfo)

Diagram 71: HVUOiriginatorinfoType (to Originatorinfo)

Diagram 72: HVZOrderParams

Diagram 73: HVZResponseOrderData

© EBICS SC Page: 267
Status: Final V 3.0.2

117
118
119

122

123

125

126
127
129
130

135

137
138

139

141

142
143
150
153
154
155
155
156
159
161

EBICS specification
EBICS detailed concept, Version 3.0.2

Diagram 74

Diagram 75:
Diagram 76:
Diagram 77:
Diagram 78:
Diagram 79:
Diagram 80:
Diagram 81:
Diagram 82:
Diagram 83:
Diagram 84:
Diagram 85:
Diagram 86:
Diagram 87:
Diagram 88:
Diagram 89:
Diagram 90:
Diagram 91.:
Diagram 92:
Diagram 93:
Diagram 94:
Diagram 95:
Diagram 96:
Diagram 97:
Diagram 98:
Diagram 99:

HVZPaymentOrderDetailsStructure
HVDOrderParams

HVDResponseOrderData

HVTOrderParams

HVTResponseOrderData

HVTOrderinfoType (to Orderinfo)
HVTAccountinfoType (to Accountinfo)
HVEOrderParams

HVSOrderParams

non-restricted BTF service structure only for HYU and HVZ request
“standard” BTF service structure for all other cases
HAAResponseOrderData
HPDResponseOrderData
HPDAccessParamsType (to AccessParams)
HPDProtocolParamsType (to ProtocolParams)
HPDVersionType (to Version)
HKDResponseOrderData

PartnerinfoType (to Partnerinfo)

AddressinfoType (to Addressinfo)

BankInfoType (to Bankinfo)

AuthOrderinfoType (to OrderInfo)

UserInfoType (to Userinfo)

UserPermissionType (to Permission)
HTDResponseOrderData

HEVRequest / HEVResponse

Definition of the XML schema type DataEncryptioninfoType

Diagram 100: OrderSignatureData — structured electronic signature

© EBICS SC

Page: 268

Status: Final V 3.0.2

162
167
170
174
177
178
179
185
188
190
191
192
194
195
196
197
200
201
202
202
203
203
204
210
213
233
258

	1 Overview and objectives of EBICS
	1.1 Objective of the cooperation
	1.2 General objectives of EBICS

	2 Definitions
	2.1 Terms
	2.2 Notation
	2.2.1 XML
	2.2.1.1 XML schema
	2.2.1.2 XML documents

	2.2.2 Flow diagrams
	2.2.3 Other notation

	2.3 Data types

	3 Design decisions
	3.1 OSI model from EBICS perspective
	3.1.1 TCP/IP as package-orientated transmission layer
	3.1.2 TLS as transport encryption
	3.1.3 HTTP(S) as a technical basic protocol
	3.1.4 XML as an application protocol language

	3.2 Compression, encryption and coding of the order data
	3.3 Segmentation of the order data
	3.4 Recovering the transmission of order data (recovery) [optional]
	3.5 Electronic signature (ES) of the order data
	3.5.1 Subscriber’s ES
	3.5.2 Financial institution’s ES [planned]
	3.5.3 Representation of the ES’s in EBICS messages

	3.6 Preliminary verification [optional]
	3.7 Technical subscribers
	3.8 Identification and authentication signature
	3.9 X.509 data
	3.10 Supported administrative order types
	3.11 Order parameters
	3.12 Flow of the EBICS transactions
	3.13 Interpretation of BTF element combinations by the bank server
	3.14 Interpretation of ES /EDS flag combinations by the bank server

	4 Key management
	4.1 Overview of the keys used
	4.2 Representation of the public keys
	4.3 Actions within key management
	4.4 Initialisation
	4.4.1 Subscriber initialisation
	4.4.1.1 General description
	4.4.1.2 Initialisation via INI and HIA
	4.4.1.2.1 INI
	4.4.1.2.2 HIA
	4.4.1.2.3 Initialisation letters
	4.4.1.2.4 Activation of the subscriber by the financial institution
	4.4.1.2.5 Description of the EBICS messages
	4.4.1.2.5.1 Format of the order data
	4.4.1.2.5.2 Description and example messages

	4.4.1.3 Initialisation via H3K

	4.4.2 Download of the financial institution’s public keys
	4.4.2.1 General description
	4.4.2.2 Description of the EBICS messages
	4.4.2.2.1 Format of the order data
	4.4.2.2.2 Description and example messages

	4.5 Suspending a subscriber
	4.5.1 Alternatives
	4.5.2 Revoking a subscriber via SPR

	4.6 Key changes
	4.6.1 Changing the subscriber keys
	4.6.1.1 General description
	4.6.1.2 Format of the order data

	4.6.2 Changing the bank keys

	4.7 Change-over to longer key lengths
	4.8 Summary

	5 EBICS transactions
	5.1 General provisions
	5.1.1 EBICS transactions
	5.1.2 Transaction phases and transaction steps
	5.1.3 Processing of orders
	5.1.3.1 Chronological dependencies between transmission and processing of upload orders
	5.1.3.2 Chronological dependencies between transmission and processing of download orders

	5.1.4 Transaction administration

	5.2 Assignment of EBICS request to EBICS transaction
	5.3 Preliminary verification of orders [optional]
	5.4 Recovery of transactions [optional]
	5.5 Upload transactions
	5.5.1 Sequence of upload transactions
	5.5.1.1 Description of the EBICS messages
	5.5.1.1.1 EBICS messages in transaction initialisation
	5.5.1.1.2 EBICS messages in the phase data transfer of a order data segment
	5.5.1.1.3 Upload Request Structure for Business Transaction Formats (BTF)

	5.5.1.2 Processing of EBICS messages
	5.5.1.2.1 Processing in the initialisation phase
	5.5.1.2.2 Processing in the data transfer phase

	5.5.2 Recovery of upload transactions

	5.6 Download transactions
	5.6.1 Sequence of download transactions
	5.6.1.1 Description of EBICS messages
	5.6.1.1.1 EBICS messages in transaction initialisation
	5.6.1.1.2 EBICS messages in the data transfer phase
	5.6.1.1.3 EBICS- messages in the acknowledgement phase
	5.6.1.1.4 Download Request Structure for Business Transaction Formats (BTF)

	5.6.1.2 Processing the EBICS messages
	5.6.1.2.1 Processing in the initialisation phase
	5.6.1.2.2 Processing in the data transfer phase
	5.6.1.2.3 Processing in the acknowledgement phase

	5.6.2 Recovery of download transactions

	6 Encryption
	6.1 Encryption at TLS level
	6.2 Encryption at application level

	7 Segmentation of the order data
	7.1 Process description
	7.2 Implementation in the EBICS messages

	8 Electronic Distributed Signature (EDS)
	8.1 Process description
	8.2 Technical implementation of the EDS
	8.3 Detailed description of the administrative EDS order types
	8.3.1 HVU (download EDS overview) and HVZ (Download EDS overview with additional information)
	8.3.1.1 HVU request
	8.3.1.1.1 XML schema (graphical representation)
	8.3.1.1.2 Meaning of the XML elements/attributes
	8.3.1.1.3 Example XML (abridged)

	8.3.1.2 HVU response
	8.3.1.2.1 XML schema (graphic representation)
	8.3.1.2.2 Meaning of the XML elements/attributes
	8.3.1.2.3 Example XML

	8.3.1.3 HVZ request
	8.3.1.3.1 XML schema (graphical representation)
	8.3.1.3.2 Meaning of the XML elements/attributes
	8.3.1.3.3 Example XML (abridged)

	8.3.1.4 HVZ response
	8.3.1.4.1 XML-Schema (graphic representation)
	8.3.1.4.2 Meaning of the XML elements/attributes
	8.3.1.4.3 Example XML

	8.3.2 HVD (retrieve EDS state)
	8.3.2.1 HVD request
	8.3.2.1.1 XML schema (graphical representation)
	8.3.2.1.2 Meaning of the XML elements/attributes
	8.3.2.1.3 Example XML (abridged)

	8.3.2.2 HVD response
	8.3.2.2.1 XML schema (graphical representation)
	8.3.2.2.2 Meaning of the XML elements/attributes
	8.3.2.2.3 Example XML

	8.3.3 HVT (retrieve EDS transaction details)
	8.3.3.1 HVT request
	8.3.3.1.1 XML schema (graphical representation)
	8.3.3.1.2 Meaning of the XML elements/attributes
	8.3.3.1.3 Example XML (abridged)

	8.3.3.2 HVT response
	8.3.3.2.1 XML schema (graphical representation)
	8.3.3.2.2 Meaning of the XML elements/attributes
	8.3.3.2.3 Example XML

	8.3.4 HVE (add electronic signature)
	8.3.4.1 HVE request
	8.3.4.1.1 XML schema (graphical representation)
	8.3.4.1.2 Meaning of the XML elements/attributes
	8.3.4.1.3 Example XML (abridged)

	8.3.4.2 HVE response

	8.3.5 HVS (Cancellation of orders in the EDS)
	8.3.5.1 HVS request
	8.3.5.1.1 XML schema (graphic representation)
	8.3.5.1.2 Meaning of the XML elements/attributes
	8.3.5.1.3 Example XML (abridged)

	8.3.5.2 HVS response

	8.3.6 Used Service Structures (restricted and not restricted)

	9 “Other” administrative EBICS order types
	9.1 HAA (download retrievable business transaction formats BTF)
	9.1.1 HAA request
	9.1.2 HAA response
	9.1.2.1.1 XML schema (graphic representation)
	9.1.2.1.2 Meaning of the XML elements/attributes

	9.2 HPD (download bank parameters)
	9.2.1 HPD request
	9.2.2 HPD response
	9.2.2.1.1 XML schema (graphic representation)
	9.2.2.1.2 Meaning of the XML elements/attributes
	9.2.2.1.3 Example XML

	9.3 HKD (retrieve customer’s customer and subscriber information)
	9.3.1 HKD request
	9.3.2 HKD response
	9.3.2.1.1 XML schema (graphic representation)
	9.3.2.1.2 Meaning of the XML elements/attributes
	9.3.2.1.3 Example XML

	9.4 HTD (retrieve subscriber’s customer and subscriber information)
	9.4.1 HTD request
	9.4.2 HTD response
	9.4.2.1.1 XML schema (graphic representation)
	9.4.2.1.2 Meaning of the XML elements/attributes
	9.4.2.1.3 Example XML

	9.5 HEV (Download of supported EBICS versions)
	9.5.1 HEV request
	9.5.2 HEV response
	9.5.3 Schema for HEV request / HEV response
	9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response
	9.5.3.2 Example XML for the HEV response

	10 EBICS Customer acknowledgement (HAC)
	10.1 Preliminary Notes
	10.2 Allocation of pain.002 for HAC
	10.2.1 Allocation of the element group Group Header
	10.2.2 Allocation of the element group Original Group Information and Status
	10.2.3 Allocation of the element group Original Payment Information and Status
	10.2.3.1 Type of action
	10.2.3.2 Result of action
	10.2.3.3 Display file (Use in Germany)
	10.2.3.3.1 Example for SEPA
	10.2.3.3.2 Example for SEPA container
	10.2.3.3.3 Example for DTAZV (German format used for international payments)

	10.3 Annex for HAC: External reason codes (result of action)
	10.4 Annex for HAC: Type/result of action (permitted pairs)

	11 Appendix: Cryptographic processes
	11.1 Identification and authentication signature
	11.1.1 Process
	11.1.2 Format

	11.2 Electronic signatures
	11.2.1 Process
	11.2.2 Format
	11.2.3 EBICS authorisation schemata for signature classes

	11.3 Encryption
	11.3.1 Encryption at TLS level
	11.3.1.1 Process

	11.3.2 Encryption at application level
	11.3.2.1 Process
	11.3.2.2 Formats

	11.4 Replay avoidance via Nonce and Timestamp
	11.4.1 Process description
	11.4.2 Actions of the customer system
	11.4.2.1 Generation of “Nonce” and “Timestamp”
	11.4.2.2 Behaviour in the event of error response EBICS_TX_MESSAGE_REPLAY

	11.4.3 Actions of the bank system
	11.4.3.1 Verification of “Nonce” and “Timestamp”

	11.5 Initialisation letters
	11.5.1 Initialisation letter for INI (example with version A006 of the ES)
	11.5.2 Initialisation letter for HIA (example)

	11.6 Generation of the transaction IDs

	12 Appendix: Overview of selected EBICS details
	12.1 Optional EBICS features
	12.1.1 Optional administrative order types
	12.1.2 Optional functionalities in the course of the transaction

	12.2 EBICS bank parameters
	12.3 Security media of bank-technical keys
	12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDs

	13 Appendix: Complete List of Administrative Order Type Identifiers
	14 Appendix: Signature process for the electronic signature
	14.1 Version A005/A006 of the electronic signature
	14.1.1 Preliminary remarks and introduction
	14.1.2 RSA
	14.1.3 Standard digital signature algorithm
	14.1.3.1 Standard signing function
	14.1.3.2 Standard recovery function

	14.1.4 Signature Mechanisms A005 and A006
	14.1.4.1 Signature Mechanism A005
	14.1.4.1.1 Digital signature generation
	14.1.4.1.2 Digital signature verification
	14.1.4.1.3 Notation

	14.1.4.2 Signature mechanism A006
	14.1.4.2.1 Mask generation function MGF1
	14.1.4.2.2 Digital signature generation according to EMSA-PSS
	14.1.4.2.3 Digital signatur verification according to EMSA-PSS
	14.1.4.2.4 Notation for EMSA-PSS
	14.1.4.2.5 Digital signature generation according to A006
	14.1.4.2.6 Digital signature verification according to A006
	14.1.4.2.7 Notation for A006

	14.1.5 References
	14.1.6 XML structure of signature versions A005/A006

	15 Appendix: Standards and references
	16 Appendix: Glossary
	17 Table of diagrams

